મુખ્ય સમાવિષ્ટ પર જાવ
n માટે ઉકેલો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4n-nn=4
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ n એ 0 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો 4n દ્વારા ગુણાકાર કરો, 4,n ના સૌથી ઓછા સામાન્ય ભાજક.
4n-n^{2}=4
n^{2} મેળવવા માટે n સાથે n નો ગુણાકાર કરો.
4n-n^{2}-4=0
બન્ને બાજુથી 4 ઘટાડો.
-n^{2}+4n-4=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
n=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -1 ને, b માટે 4 ને, અને c માટે -4 ને બદલીને મૂકો.
n=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
વર્ગ 4.
n=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
-1 ને -4 વાર ગુણાકાર કરો.
n=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
-4 ને 4 વાર ગુણાકાર કરો.
n=\frac{-4±\sqrt{0}}{2\left(-1\right)}
-16 માં 16 ઍડ કરો.
n=-\frac{4}{2\left(-1\right)}
0 નો વર્ગ મૂળ લો.
n=-\frac{4}{-2}
-1 ને 2 વાર ગુણાકાર કરો.
n=2
-4 નો -2 થી ભાગાકાર કરો.
4n-nn=4
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ n એ 0 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો 4n દ્વારા ગુણાકાર કરો, 4,n ના સૌથી ઓછા સામાન્ય ભાજક.
4n-n^{2}=4
n^{2} મેળવવા માટે n સાથે n નો ગુણાકાર કરો.
-n^{2}+4n=4
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{-n^{2}+4n}{-1}=\frac{4}{-1}
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
n^{2}+\frac{4}{-1}n=\frac{4}{-1}
-1 થી ભાગાકાર કરવાથી -1 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
n^{2}-4n=\frac{4}{-1}
4 નો -1 થી ભાગાકાર કરો.
n^{2}-4n=-4
4 નો -1 થી ભાગાકાર કરો.
n^{2}-4n+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-4, x પદના ગુણાંકને, -2 મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -2 ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
n^{2}-4n+4=-4+4
વર્ગ -2.
n^{2}-4n+4=0
4 માં -4 ઍડ કરો.
\left(n-2\right)^{2}=0
અવયવ n^{2}-4n+4. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(n-2\right)^{2}}=\sqrt{0}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
n-2=0 n-2=0
સરળ બનાવો.
n=2 n=2
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
n=2
સમીકરણ હવે ઉકેલાઈ ગયું છે. ઉકેલો સમાન જ છે.