મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

0=\left(x-1\right)^{2}
બન્ને બાજુનો -3 થી ભાગાકાર કરો. કોઈપણ બિન-શૂન્ય સંખ્યા દ્વારા ભાગાકાર કરેલ શૂન્ય એ શૂન્ય આપે છે.
0=x^{2}-2x+1
\left(x-1\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a-b\right)^{2}=a^{2}-2ab+b^{2} નો ઉપયોગ કરો.
x^{2}-2x+1=0
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
a+b=-2 ab=1
સમીકરણને ઉકેલવા માટે, x^{2}-2x+1 નો અવયવ પાડવા માટે સૂત્ર x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) નો ઉપયોગ કરો. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=-1 b=-1
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(x-1\right)\left(x-1\right)
મેળવેલ મૂલ્યો નો ઉપયોગ કરીને અવયવ પાડેલ પદાવલિ \left(x+a\right)\left(x+b\right) ને ફરીથી લખો.
\left(x-1\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
x=1
સમીકરણનો ઉકેલ શોધવા માટે, x-1=0 ઉકેલો.
0=\left(x-1\right)^{2}
બન્ને બાજુનો -3 થી ભાગાકાર કરો. કોઈપણ બિન-શૂન્ય સંખ્યા દ્વારા ભાગાકાર કરેલ શૂન્ય એ શૂન્ય આપે છે.
0=x^{2}-2x+1
\left(x-1\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a-b\right)^{2}=a^{2}-2ab+b^{2} નો ઉપયોગ કરો.
x^{2}-2x+1=0
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
a+b=-2 ab=1\times 1=1
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની x^{2}+ax+bx+1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=-1 b=-1
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(x^{2}-x\right)+\left(-x+1\right)
x^{2}-2x+1 ને \left(x^{2}-x\right)+\left(-x+1\right) તરીકે ફરીથી લખો.
x\left(x-1\right)-\left(x-1\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(x-1\right)\left(x-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-1 ના અવયવ પાડો.
\left(x-1\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
x=1
સમીકરણનો ઉકેલ શોધવા માટે, x-1=0 ઉકેલો.
0=\left(x-1\right)^{2}
બન્ને બાજુનો -3 થી ભાગાકાર કરો. કોઈપણ બિન-શૂન્ય સંખ્યા દ્વારા ભાગાકાર કરેલ શૂન્ય એ શૂન્ય આપે છે.
0=x^{2}-2x+1
\left(x-1\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a-b\right)^{2}=a^{2}-2ab+b^{2} નો ઉપયોગ કરો.
x^{2}-2x+1=0
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે -2 ને, અને c માટે 1 ને બદલીને મૂકો.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
વર્ગ -2.
x=\frac{-\left(-2\right)±\sqrt{0}}{2}
-4 માં 4 ઍડ કરો.
x=-\frac{-2}{2}
0 નો વર્ગ મૂળ લો.
x=\frac{2}{2}
-2 નો વિરોધી 2 છે.
x=1
2 નો 2 થી ભાગાકાર કરો.
0=\left(x-1\right)^{2}
બન્ને બાજુનો -3 થી ભાગાકાર કરો. કોઈપણ બિન-શૂન્ય સંખ્યા દ્વારા ભાગાકાર કરેલ શૂન્ય એ શૂન્ય આપે છે.
0=x^{2}-2x+1
\left(x-1\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a-b\right)^{2}=a^{2}-2ab+b^{2} નો ઉપયોગ કરો.
x^{2}-2x+1=0
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
\left(x-1\right)^{2}=0
અવયવ x^{2}-2x+1. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-1=0 x-1=0
સરળ બનાવો.
x=1 x=1
સમીકરણની બન્ને બાજુ 1 ઍડ કરો.
x=1
સમીકરણ હવે ઉકેલાઈ ગયું છે. ઉકેલો સમાન જ છે.