અવયવ
-3\left(x+1\right)^{2}
મૂલ્યાંકન કરો
-3\left(x+1\right)^{2}
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
3\left(-x^{2}-2x-1\right)
3 નો અવયવ પાડો.
a+b=-2 ab=-\left(-1\right)=1
-x^{2}-2x-1 ગણતરી કરો. સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને -x^{2}+ax+bx-1 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=-1 b=-1
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(-x^{2}-x\right)+\left(-x-1\right)
-x^{2}-2x-1 ને \left(-x^{2}-x\right)+\left(-x-1\right) તરીકે ફરીથી લખો.
-x\left(x+1\right)-\left(x+1\right)
પ્રથમ સમૂહમાં -x અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(x+1\right)\left(-x-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x+1 ના અવયવ પાડો.
3\left(x+1\right)\left(-x-1\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
-3x^{2}-6x-3=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
વર્ગ -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\left(-3\right)}}{2\left(-3\right)}
-3 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-3\right)}
-3 ને 12 વાર ગુણાકાર કરો.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-3\right)}
-36 માં 36 ઍડ કરો.
x=\frac{-\left(-6\right)±0}{2\left(-3\right)}
0 નો વર્ગ મૂળ લો.
x=\frac{6±0}{2\left(-3\right)}
-6 નો વિરોધી 6 છે.
x=\frac{6±0}{-6}
-3 ને 2 વાર ગુણાકાર કરો.
-3x^{2}-6x-3=-3\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -1 અને x_{2} ને બદલે -1 મૂકો.
-3x^{2}-6x-3=-3\left(x+1\right)\left(x+1\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}