મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=-2 ab=-8=-8
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને -x^{2}+ax+bx+8 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-8 2,-4
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -8 આપે છે.
1-8=-7 2-4=-2
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=2 b=-4
સમાધાન એ જોડી છે જે સરવાળો -2 આપે છે.
\left(-x^{2}+2x\right)+\left(-4x+8\right)
-x^{2}-2x+8 ને \left(-x^{2}+2x\right)+\left(-4x+8\right) તરીકે ફરીથી લખો.
x\left(-x+2\right)+4\left(-x+2\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 4 ના અવયવ પાડો.
\left(-x+2\right)\left(x+4\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ -x+2 ના અવયવ પાડો.
-x^{2}-2x+8=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 8}}{2\left(-1\right)}
વર્ગ -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 8}}{2\left(-1\right)}
-1 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\left(-1\right)}
8 ને 4 વાર ગુણાકાર કરો.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\left(-1\right)}
32 માં 4 ઍડ કરો.
x=\frac{-\left(-2\right)±6}{2\left(-1\right)}
36 નો વર્ગ મૂળ લો.
x=\frac{2±6}{2\left(-1\right)}
-2 નો વિરોધી 2 છે.
x=\frac{2±6}{-2}
-1 ને 2 વાર ગુણાકાર કરો.
x=\frac{8}{-2}
હવે x=\frac{2±6}{-2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 6 માં 2 ઍડ કરો.
x=-4
8 નો -2 થી ભાગાકાર કરો.
x=-\frac{4}{-2}
હવે x=\frac{2±6}{-2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 2 માંથી 6 ને ઘટાડો.
x=2
-4 નો -2 થી ભાગાકાર કરો.
-x^{2}-2x+8=-\left(x-\left(-4\right)\right)\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે -4 અને x_{2} ને બદલે 2 મૂકો.
-x^{2}-2x+8=-\left(x+4\right)\left(x-2\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.