x માટે ઉકેલો
x=2
x=3
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=5 ab=-\left(-6\right)=6
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની -x^{2}+ax+bx-6 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,6 2,3
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 6 આપે છે.
1+6=7 2+3=5
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=3 b=2
સમાધાન એ જોડી છે જે સરવાળો 5 આપે છે.
\left(-x^{2}+3x\right)+\left(2x-6\right)
-x^{2}+5x-6 ને \left(-x^{2}+3x\right)+\left(2x-6\right) તરીકે ફરીથી લખો.
-x\left(x-3\right)+2\left(x-3\right)
પ્રથમ સમૂહમાં -x અને બીજા સમૂહમાં 2 ના અવયવ પાડો.
\left(x-3\right)\left(-x+2\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-3 ના અવયવ પાડો.
x=3 x=2
સમીકરણનો ઉકેલ શોધવા માટે, x-3=0 અને -x+2=0 ઉકેલો.
-x^{2}+5x-6=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -1 ને, b માટે 5 ને, અને c માટે -6 ને બદલીને મૂકો.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
વર્ગ 5.
x=\frac{-5±\sqrt{25+4\left(-6\right)}}{2\left(-1\right)}
-1 ને -4 વાર ગુણાકાર કરો.
x=\frac{-5±\sqrt{25-24}}{2\left(-1\right)}
-6 ને 4 વાર ગુણાકાર કરો.
x=\frac{-5±\sqrt{1}}{2\left(-1\right)}
-24 માં 25 ઍડ કરો.
x=\frac{-5±1}{2\left(-1\right)}
1 નો વર્ગ મૂળ લો.
x=\frac{-5±1}{-2}
-1 ને 2 વાર ગુણાકાર કરો.
x=-\frac{4}{-2}
હવે x=\frac{-5±1}{-2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 1 માં -5 ઍડ કરો.
x=2
-4 નો -2 થી ભાગાકાર કરો.
x=-\frac{6}{-2}
હવે x=\frac{-5±1}{-2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -5 માંથી 1 ને ઘટાડો.
x=3
-6 નો -2 થી ભાગાકાર કરો.
x=2 x=3
સમીકરણ હવે ઉકેલાઈ ગયું છે.
-x^{2}+5x-6=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
-x^{2}+5x-6-\left(-6\right)=-\left(-6\right)
સમીકરણની બન્ને બાજુ 6 ઍડ કરો.
-x^{2}+5x=-\left(-6\right)
સ્વયંમાંથી -6 ઘટાડવા પર 0 બચે.
-x^{2}+5x=6
0 માંથી -6 ને ઘટાડો.
\frac{-x^{2}+5x}{-1}=\frac{6}{-1}
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x^{2}+\frac{5}{-1}x=\frac{6}{-1}
-1 થી ભાગાકાર કરવાથી -1 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-5x=\frac{6}{-1}
5 નો -1 થી ભાગાકાર કરો.
x^{2}-5x=-6
6 નો -1 થી ભાગાકાર કરો.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
-5, x પદના ગુણાંકને, -\frac{5}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{5}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{5}{2} નો વર્ગ કાઢો.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
\frac{25}{4} માં -6 ઍડ કરો.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
અવયવ x^{2}-5x+\frac{25}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
સરળ બનાવો.
x=3 x=2
સમીકરણની બન્ને બાજુ \frac{5}{2} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}