મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-x^{2}+4x-x=-4
બન્ને બાજુથી x ઘટાડો.
-x^{2}+3x=-4
3x ને મેળવવા માટે 4x અને -x ને એકસાથે કરો.
-x^{2}+3x+4=0
બંને સાઇડ્સ માટે 4 ઍડ કરો.
a+b=3 ab=-4=-4
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની -x^{2}+ax+bx+4 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,4 -2,2
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -4 આપે છે.
-1+4=3 -2+2=0
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=4 b=-1
સમાધાન એ જોડી છે જે સરવાળો 3 આપે છે.
\left(-x^{2}+4x\right)+\left(-x+4\right)
-x^{2}+3x+4 ને \left(-x^{2}+4x\right)+\left(-x+4\right) તરીકે ફરીથી લખો.
-x\left(x-4\right)-\left(x-4\right)
પ્રથમ સમૂહમાં -x અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(x-4\right)\left(-x-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-4 ના અવયવ પાડો.
x=4 x=-1
સમીકરણનો ઉકેલ શોધવા માટે, x-4=0 અને -x-1=0 ઉકેલો.
-x^{2}+4x-x=-4
બન્ને બાજુથી x ઘટાડો.
-x^{2}+3x=-4
3x ને મેળવવા માટે 4x અને -x ને એકસાથે કરો.
-x^{2}+3x+4=0
બંને સાઇડ્સ માટે 4 ઍડ કરો.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -1 ને, b માટે 3 ને, અને c માટે 4 ને બદલીને મૂકો.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
વર્ગ 3.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
-1 ને -4 વાર ગુણાકાર કરો.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
4 ને 4 વાર ગુણાકાર કરો.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
16 માં 9 ઍડ કરો.
x=\frac{-3±5}{2\left(-1\right)}
25 નો વર્ગ મૂળ લો.
x=\frac{-3±5}{-2}
-1 ને 2 વાર ગુણાકાર કરો.
x=\frac{2}{-2}
હવે x=\frac{-3±5}{-2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 5 માં -3 ઍડ કરો.
x=-1
2 નો -2 થી ભાગાકાર કરો.
x=-\frac{8}{-2}
હવે x=\frac{-3±5}{-2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -3 માંથી 5 ને ઘટાડો.
x=4
-8 નો -2 થી ભાગાકાર કરો.
x=-1 x=4
સમીકરણ હવે ઉકેલાઈ ગયું છે.
-x^{2}+4x-x=-4
બન્ને બાજુથી x ઘટાડો.
-x^{2}+3x=-4
3x ને મેળવવા માટે 4x અને -x ને એકસાથે કરો.
\frac{-x^{2}+3x}{-1}=-\frac{4}{-1}
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x^{2}+\frac{3}{-1}x=-\frac{4}{-1}
-1 થી ભાગાકાર કરવાથી -1 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-3x=-\frac{4}{-1}
3 નો -1 થી ભાગાકાર કરો.
x^{2}-3x=4
-4 નો -1 થી ભાગાકાર કરો.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-3, x પદના ગુણાંકને, -\frac{3}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{3}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{3}{2} નો વર્ગ કાઢો.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
\frac{9}{4} માં 4 ઍડ કરો.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
અવયવ x^{2}-3x+\frac{9}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
સરળ બનાવો.
x=4 x=-1
સમીકરણની બન્ને બાજુ \frac{3}{2} ઍડ કરો.