x માટે ઉકેલો
x=-1
x=3
y માટે ઉકેલો (જટિલ સમાધાન)
y\in \mathrm{C}
x=-1\text{ or }x=3
y માટે ઉકેલો
y\in \mathrm{R}
x=-1\text{ or }x=3
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
-x^{2}+2x+3=0
કંઈપણને શૂન્ય વાર ગુણાકાર કરવાથી શૂન્ય આપે છે.
a+b=2 ab=-3=-3
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની -x^{2}+ax+bx+3 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
a=3 b=-1
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી એકમાત્ર જોડી સિસ્ટમ સમાધાન છે.
\left(-x^{2}+3x\right)+\left(-x+3\right)
-x^{2}+2x+3 ને \left(-x^{2}+3x\right)+\left(-x+3\right) તરીકે ફરીથી લખો.
-x\left(x-3\right)-\left(x-3\right)
પ્રથમ સમૂહમાં -x અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(x-3\right)\left(-x-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-3 ના અવયવ પાડો.
x=3 x=-1
સમીકરણનો ઉકેલ શોધવા માટે, x-3=0 અને -x-1=0 ઉકેલો.
-x^{2}+2x+3=0
કંઈપણને શૂન્ય વાર ગુણાકાર કરવાથી શૂન્ય આપે છે.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -1 ને, b માટે 2 ને, અને c માટે 3 ને બદલીને મૂકો.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
વર્ગ 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
-1 ને -4 વાર ગુણાકાર કરો.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
3 ને 4 વાર ગુણાકાર કરો.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
12 માં 4 ઍડ કરો.
x=\frac{-2±4}{2\left(-1\right)}
16 નો વર્ગ મૂળ લો.
x=\frac{-2±4}{-2}
-1 ને 2 વાર ગુણાકાર કરો.
x=\frac{2}{-2}
હવે x=\frac{-2±4}{-2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 4 માં -2 ઍડ કરો.
x=-1
2 નો -2 થી ભાગાકાર કરો.
x=-\frac{6}{-2}
હવે x=\frac{-2±4}{-2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -2 માંથી 4 ને ઘટાડો.
x=3
-6 નો -2 થી ભાગાકાર કરો.
x=-1 x=3
સમીકરણ હવે ઉકેલાઈ ગયું છે.
-x^{2}+2x+3=0
કંઈપણને શૂન્ય વાર ગુણાકાર કરવાથી શૂન્ય આપે છે.
-x^{2}+2x=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
-1 થી ભાગાકાર કરવાથી -1 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-2x=-\frac{3}{-1}
2 નો -1 થી ભાગાકાર કરો.
x^{2}-2x=3
-3 નો -1 થી ભાગાકાર કરો.
x^{2}-2x+1=3+1
-2, x પદના ગુણાંકને, -1 મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -1 ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-2x+1=4
1 માં 3 ઍડ કરો.
\left(x-1\right)^{2}=4
અવયવ x^{2}-2x+1. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-1=2 x-1=-2
સરળ બનાવો.
x=3 x=-1
સમીકરણની બન્ને બાજુ 1 ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}