x માટે ઉકેલો
x=3
x=9
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
-7x^{2}+84x-189=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-84±\sqrt{84^{2}-4\left(-7\right)\left(-189\right)}}{2\left(-7\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -7 ને, b માટે 84 ને, અને c માટે -189 ને બદલીને મૂકો.
x=\frac{-84±\sqrt{7056-4\left(-7\right)\left(-189\right)}}{2\left(-7\right)}
વર્ગ 84.
x=\frac{-84±\sqrt{7056+28\left(-189\right)}}{2\left(-7\right)}
-7 ને -4 વાર ગુણાકાર કરો.
x=\frac{-84±\sqrt{7056-5292}}{2\left(-7\right)}
-189 ને 28 વાર ગુણાકાર કરો.
x=\frac{-84±\sqrt{1764}}{2\left(-7\right)}
-5292 માં 7056 ઍડ કરો.
x=\frac{-84±42}{2\left(-7\right)}
1764 નો વર્ગ મૂળ લો.
x=\frac{-84±42}{-14}
-7 ને 2 વાર ગુણાકાર કરો.
x=-\frac{42}{-14}
હવે x=\frac{-84±42}{-14} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 42 માં -84 ઍડ કરો.
x=3
-42 નો -14 થી ભાગાકાર કરો.
x=-\frac{126}{-14}
હવે x=\frac{-84±42}{-14} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -84 માંથી 42 ને ઘટાડો.
x=9
-126 નો -14 થી ભાગાકાર કરો.
x=3 x=9
સમીકરણ હવે ઉકેલાઈ ગયું છે.
-7x^{2}+84x-189=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
-7x^{2}+84x-189-\left(-189\right)=-\left(-189\right)
સમીકરણની બન્ને બાજુ 189 ઍડ કરો.
-7x^{2}+84x=-\left(-189\right)
સ્વયંમાંથી -189 ઘટાડવા પર 0 બચે.
-7x^{2}+84x=189
0 માંથી -189 ને ઘટાડો.
\frac{-7x^{2}+84x}{-7}=\frac{189}{-7}
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
x^{2}+\frac{84}{-7}x=\frac{189}{-7}
-7 થી ભાગાકાર કરવાથી -7 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-12x=\frac{189}{-7}
84 નો -7 થી ભાગાકાર કરો.
x^{2}-12x=-27
189 નો -7 થી ભાગાકાર કરો.
x^{2}-12x+\left(-6\right)^{2}=-27+\left(-6\right)^{2}
-12, x પદના ગુણાંકને, -6 મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -6 ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-12x+36=-27+36
વર્ગ -6.
x^{2}-12x+36=9
36 માં -27 ઍડ કરો.
\left(x-6\right)^{2}=9
અવયવ x^{2}-12x+36. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-6\right)^{2}}=\sqrt{9}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-6=3 x-6=-3
સરળ બનાવો.
x=9 x=3
સમીકરણની બન્ને બાજુ 6 ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}