x માટે ઉકેલો
x=5
x=-5
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
100+4x^{2}=8xx
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ 0 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો x સાથે ગુણાકાર કરો.
100+4x^{2}=8x^{2}
x^{2} મેળવવા માટે x સાથે x નો ગુણાકાર કરો.
100+4x^{2}-8x^{2}=0
બન્ને બાજુથી 8x^{2} ઘટાડો.
100-4x^{2}=0
-4x^{2} ને મેળવવા માટે 4x^{2} અને -8x^{2} ને એકસાથે કરો.
-4x^{2}=-100
બન્ને બાજુથી 100 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x^{2}=\frac{-100}{-4}
બન્ને બાજુનો -4 થી ભાગાકાર કરો.
x^{2}=25
25 મેળવવા માટે -100 નો -4 થી ભાગાકાર કરો.
x=5 x=-5
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
100+4x^{2}=8xx
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ 0 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુનો x સાથે ગુણાકાર કરો.
100+4x^{2}=8x^{2}
x^{2} મેળવવા માટે x સાથે x નો ગુણાકાર કરો.
100+4x^{2}-8x^{2}=0
બન્ને બાજુથી 8x^{2} ઘટાડો.
100-4x^{2}=0
-4x^{2} ને મેળવવા માટે 4x^{2} અને -8x^{2} ને એકસાથે કરો.
-4x^{2}+100=0
આના જેવો ચતુર્વર્ગીય સૂત્ર, x^{2} પદ સાથે પણ કોઈ x પદ નહીં, ચતુર્વર્ગીય સૂત્રનો ઉપયોગ કરી હજી પણ ઉકેલી શકાય છે, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, એક વાર તેને માનક પ્રપત્રમાં મૂક્યા પછી: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 100}}{2\left(-4\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -4 ને, b માટે 0 ને, અને c માટે 100 ને બદલીને મૂકો.
x=\frac{0±\sqrt{-4\left(-4\right)\times 100}}{2\left(-4\right)}
વર્ગ 0.
x=\frac{0±\sqrt{16\times 100}}{2\left(-4\right)}
-4 ને -4 વાર ગુણાકાર કરો.
x=\frac{0±\sqrt{1600}}{2\left(-4\right)}
100 ને 16 વાર ગુણાકાર કરો.
x=\frac{0±40}{2\left(-4\right)}
1600 નો વર્ગ મૂળ લો.
x=\frac{0±40}{-8}
-4 ને 2 વાર ગુણાકાર કરો.
x=-5
હવે x=\frac{0±40}{-8} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 40 નો -8 થી ભાગાકાર કરો.
x=5
હવે x=\frac{0±40}{-8} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -40 નો -8 થી ભાગાકાર કરો.
x=-5 x=5
સમીકરણ હવે ઉકેલાઈ ગયું છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}