x માટે ઉકેલો
x=1
x=6
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
x^{2}-7x+12-6=0
x-3 નો x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
x^{2}-7x+6=0
6 મેળવવા માટે 12 માંથી 6 ને ઘટાડો.
a+b=-7 ab=6
સમીકરણને ઉકેલવા માટે, x^{2}-7x+6 નો અવયવ પાડવા માટે સૂત્ર x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) નો ઉપયોગ કરો. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-6 -2,-3
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 6 આપે છે.
-1-6=-7 -2-3=-5
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=-1
સમાધાન એ જોડી છે જે સરવાળો -7 આપે છે.
\left(x-6\right)\left(x-1\right)
મેળવેલ મૂલ્યો નો ઉપયોગ કરીને અવયવ પાડેલ પદાવલિ \left(x+a\right)\left(x+b\right) ને ફરીથી લખો.
x=6 x=1
સમીકરણનો ઉકેલ શોધવા માટે, x-6=0 અને x-1=0 ઉકેલો.
x^{2}-7x+12-6=0
x-3 નો x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
x^{2}-7x+6=0
6 મેળવવા માટે 12 માંથી 6 ને ઘટાડો.
a+b=-7 ab=1\times 6=6
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની x^{2}+ax+bx+6 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-6 -2,-3
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 6 આપે છે.
-1-6=-7 -2-3=-5
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=-1
સમાધાન એ જોડી છે જે સરવાળો -7 આપે છે.
\left(x^{2}-6x\right)+\left(-x+6\right)
x^{2}-7x+6 ને \left(x^{2}-6x\right)+\left(-x+6\right) તરીકે ફરીથી લખો.
x\left(x-6\right)-\left(x-6\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં -1 ના અવયવ પાડો.
\left(x-6\right)\left(x-1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-6 ના અવયવ પાડો.
x=6 x=1
સમીકરણનો ઉકેલ શોધવા માટે, x-6=0 અને x-1=0 ઉકેલો.
x^{2}-7x+12-6=0
x-3 નો x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
x^{2}-7x+6=0
6 મેળવવા માટે 12 માંથી 6 ને ઘટાડો.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે -7 ને, અને c માટે 6 ને બદલીને મૂકો.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6}}{2}
વર્ગ -7.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2}
6 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-7\right)±\sqrt{25}}{2}
-24 માં 49 ઍડ કરો.
x=\frac{-\left(-7\right)±5}{2}
25 નો વર્ગ મૂળ લો.
x=\frac{7±5}{2}
-7 નો વિરોધી 7 છે.
x=\frac{12}{2}
હવે x=\frac{7±5}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 5 માં 7 ઍડ કરો.
x=6
12 નો 2 થી ભાગાકાર કરો.
x=\frac{2}{2}
હવે x=\frac{7±5}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 7 માંથી 5 ને ઘટાડો.
x=1
2 નો 2 થી ભાગાકાર કરો.
x=6 x=1
સમીકરણ હવે ઉકેલાઈ ગયું છે.
x^{2}-7x+12-6=0
x-3 નો x-4 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
x^{2}-7x+6=0
6 મેળવવા માટે 12 માંથી 6 ને ઘટાડો.
x^{2}-7x=-6
બન્ને બાજુથી 6 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-6+\left(-\frac{7}{2}\right)^{2}
-7, x પદના ગુણાંકને, -\frac{7}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{7}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-7x+\frac{49}{4}=-6+\frac{49}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{7}{2} નો વર્ગ કાઢો.
x^{2}-7x+\frac{49}{4}=\frac{25}{4}
\frac{49}{4} માં -6 ઍડ કરો.
\left(x-\frac{7}{2}\right)^{2}=\frac{25}{4}
અવયવ x^{2}-7x+\frac{49}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{7}{2}=\frac{5}{2} x-\frac{7}{2}=-\frac{5}{2}
સરળ બનાવો.
x=6 x=1
સમીકરણની બન્ને બાજુ \frac{7}{2} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}