મુખ્ય સમાવિષ્ટ પર જાવ
મૂલ્યાંકન કરો
Tick mark Image
અવયવ
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\left(x^{2}+\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\frac{2x}{\sqrt{3}} ના અંશને \sqrt{3} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
\left(x^{2}+\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\sqrt{3} નો વર્ગ 3 છે.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
કારણ કે \frac{2x\sqrt{3}}{3} અને \frac{1}{3} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)
\frac{2x}{\sqrt{3}} ના અંશને \sqrt{3} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)
\sqrt{3} નો વર્ગ 3 છે.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)
કારણ કે \frac{2x\sqrt{3}}{3} અને \frac{1}{3} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2} મેળવવા માટે x^{2}+\frac{2x\sqrt{3}+1}{3} સાથે x^{2}+\frac{2x\sqrt{3}+1}{3} નો ગુણાકાર કરો.
\left(\frac{3x^{2}}{3}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{3}{3} ને x^{2} વાર ગુણાકાર કરો.
\left(\frac{3x^{2}+2x\sqrt{3}+1}{3}\right)^{2}
કારણ કે \frac{3x^{2}}{3} અને \frac{2x\sqrt{3}+1}{3} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{\left(3x^{2}+2x\sqrt{3}+1\right)^{2}}{3^{2}}
\frac{3x^{2}+2x\sqrt{3}+1}{3} નો ઘાત વધારવા માટે, અંશ અને છેદ એમ બન્નેનો ઘાત વધારો અને પછી તેને વિભાજિત કરો.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\left(\sqrt{3}\right)^{2}x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
વર્ગ 3x^{2}+2x\sqrt{3}+1.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\times 3x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
\sqrt{3} નો વર્ગ 3 છે.
\frac{9x^{4}+12\sqrt{3}x^{3}+12x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
12 મેળવવા માટે 4 સાથે 3 નો ગુણાકાર કરો.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{3^{2}}
18x^{2} ને મેળવવા માટે 12x^{2} અને 6x^{2} ને એકસાથે કરો.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{9}
2 ના 3 ની ગણના કરો અને 9 મેળવો.