x માટે ઉકેલો
x=-5
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
x^{2}+10x+25=0
\left(x+5\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a+b\right)^{2}=a^{2}+2ab+b^{2} નો ઉપયોગ કરો.
a+b=10 ab=25
સમીકરણને ઉકેલવા માટે, x^{2}+10x+25 નો અવયવ પાડવા માટે સૂત્ર x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) નો ઉપયોગ કરો. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,25 5,5
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 25 આપે છે.
1+25=26 5+5=10
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=5 b=5
સમાધાન એ જોડી છે જે સરવાળો 10 આપે છે.
\left(x+5\right)\left(x+5\right)
મેળવેલ મૂલ્યો નો ઉપયોગ કરીને અવયવ પાડેલ પદાવલિ \left(x+a\right)\left(x+b\right) ને ફરીથી લખો.
\left(x+5\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
x=-5
સમીકરણનો ઉકેલ શોધવા માટે, x+5=0 ઉકેલો.
x^{2}+10x+25=0
\left(x+5\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a+b\right)^{2}=a^{2}+2ab+b^{2} નો ઉપયોગ કરો.
a+b=10 ab=1\times 25=25
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની x^{2}+ax+bx+25 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,25 5,5
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, બંને a અને b ઘનાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 25 આપે છે.
1+25=26 5+5=10
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=5 b=5
સમાધાન એ જોડી છે જે સરવાળો 10 આપે છે.
\left(x^{2}+5x\right)+\left(5x+25\right)
x^{2}+10x+25 ને \left(x^{2}+5x\right)+\left(5x+25\right) તરીકે ફરીથી લખો.
x\left(x+5\right)+5\left(x+5\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 5 ના અવયવ પાડો.
\left(x+5\right)\left(x+5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x+5 ના અવયવ પાડો.
\left(x+5\right)^{2}
દ્વિપદી વર્ગ તરીકે ફરી લખો.
x=-5
સમીકરણનો ઉકેલ શોધવા માટે, x+5=0 ઉકેલો.
x^{2}+10x+25=0
\left(x+5\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a+b\right)^{2}=a^{2}+2ab+b^{2} નો ઉપયોગ કરો.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે 10 ને, અને c માટે 25 ને બદલીને મૂકો.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
વર્ગ 10.
x=\frac{-10±\sqrt{100-100}}{2}
25 ને -4 વાર ગુણાકાર કરો.
x=\frac{-10±\sqrt{0}}{2}
-100 માં 100 ઍડ કરો.
x=-\frac{10}{2}
0 નો વર્ગ મૂળ લો.
x=-5
-10 નો 2 થી ભાગાકાર કરો.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+5=0 x+5=0
સરળ બનાવો.
x=-5 x=-5
સમીકરણની બન્ને બાજુથી 5 નો ઘટાડો કરો.
x=-5
સમીકરણ હવે ઉકેલાઈ ગયું છે. ઉકેલો સમાન જ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}