મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x^{2}-1=5\left(x+1\right)
\left(x+1\right)\left(x-1\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. વર્ગ 1.
x^{2}-1=5x+5
5 સાથે x+1 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
x^{2}-1-5x=5
બન્ને બાજુથી 5x ઘટાડો.
x^{2}-1-5x-5=0
બન્ને બાજુથી 5 ઘટાડો.
x^{2}-6-5x=0
-6 મેળવવા માટે -1 માંથી 5 ને ઘટાડો.
x^{2}-5x-6=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6\right)}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે -5 ને, અને c માટે -6 ને બદલીને મૂકો.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6\right)}}{2}
વર્ગ -5.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2}
-6 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-5\right)±\sqrt{49}}{2}
24 માં 25 ઍડ કરો.
x=\frac{-\left(-5\right)±7}{2}
49 નો વર્ગ મૂળ લો.
x=\frac{5±7}{2}
-5 નો વિરોધી 5 છે.
x=\frac{12}{2}
હવે x=\frac{5±7}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 7 માં 5 ઍડ કરો.
x=6
12 નો 2 થી ભાગાકાર કરો.
x=-\frac{2}{2}
હવે x=\frac{5±7}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 5 માંથી 7 ને ઘટાડો.
x=-1
-2 નો 2 થી ભાગાકાર કરો.
x=6 x=-1
સમીકરણ હવે ઉકેલાઈ ગયું છે.
x^{2}-1=5\left(x+1\right)
\left(x+1\right)\left(x-1\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. વર્ગ 1.
x^{2}-1=5x+5
5 સાથે x+1 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
x^{2}-1-5x=5
બન્ને બાજુથી 5x ઘટાડો.
x^{2}-5x=5+1
બંને સાઇડ્સ માટે 1 ઍડ કરો.
x^{2}-5x=6
6મેળવવા માટે 5 અને 1 ને ઍડ કરો.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
-5, x પદના ગુણાંકને, -\frac{5}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{5}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{5}{2} નો વર્ગ કાઢો.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
\frac{25}{4} માં 6 ઍડ કરો.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
અવયવ x^{2}-5x+\frac{25}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
સરળ બનાવો.
x=6 x=-1
સમીકરણની બન્ને બાજુ \frac{5}{2} ઍડ કરો.