મુખ્ય સમાવિષ્ટ પર જાવ
મૂલ્યાંકન કરો
Tick mark Image
w.r.t.s ભેદ પાડો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\left(s^{-5}\right)^{3}
પદાવલિને સરળ બનાવવા માટે ઘાતાંકોના નિયમોનો ઉપયોગ કરો.
s^{-5\times 3}
કોઈ સંખ્યાની ઘાતને બીજી ઘાત પર વધારવા માટે, ઘાતાંકોનો ગુણાકાર કરો.
\frac{1}{s^{15}}
3 ને -5 વાર ગુણાકાર કરો.
3\left(s^{-5}\right)^{3-1}\frac{\mathrm{d}}{\mathrm{d}s}(s^{-5})
જો F એ બે ભેદકારક ફંક્શન્સની f\left(u\right) અને u=g\left(x\right) ની રચના છે, એટલે કે, જો F\left(x\right)=f\left(g\left(x\right)\right), તો પછી F નું વ્યુત્પન્ન એ f નું વ્યુત્પન્નને લગતું u વાર g વ્યુત્પન્નને લગતું x છે, એટલે કે \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) છે.
3\left(s^{-5}\right)^{2}\left(-5\right)s^{-5-1}
બહુપદીનું વ્યુત્પન્ન એ એના પદોના વ્યુત્પન્નનો સરવાળો છે. કોઈ અચલ પદનું વ્યુત્પન્ન 0 છે. ax^{n} નું વ્યુત્પન્ન nax^{n-1} છે.
-15s^{-6}\left(s^{-5}\right)^{2}
સરળ બનાવો.