મૂલ્યાંકન કરો
-2+\frac{2}{9x^{2}}
વિસ્તૃત કરો
-2+\frac{2}{9x^{2}}
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{3x}{3x} ને 3x વાર ગુણાકાર કરો.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
કારણ કે \frac{3x\times 3x}{3x} અને \frac{1}{3x} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
3x\times 3x-1 માં ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
\frac{9x^{2}-1}{3x} નો ઘાત વધારવા માટે, અંશ અને છેદ એમ બન્નેનો ઘાત વધારો અને પછી તેને વિભાજિત કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{3x}{3x} ને 3x વાર ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
કારણ કે \frac{3x\times 3x}{3x} અને \frac{1}{3x} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
3x\times 3x+1 માં ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{3x}{3x} ને 3x વાર ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
કારણ કે \frac{3x\times 3x}{3x} અને \frac{1}{3x} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
3x\times 3x-1 માં ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
ગુણક વારનો ગુણક અને ભાજક વારનો ભાજકથી ગુણાકાર કરીને \frac{9x^{2}-1}{3x} નો \frac{9x^{2}+1}{3x} વાર ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
x^{2} મેળવવા માટે x સાથે x નો ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
9 મેળવવા માટે 3 સાથે 3 નો ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \left(3x\right)^{2} ને વિસ્તૃત કરો.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
કારણ કે \frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} અને \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right) માં ગુણાકાર કરો.
\frac{-18x^{2}+2}{9x^{2}}
81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1 માં સમાન પદોને સંયોજિત કરો.
\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{3x}{3x} ને 3x વાર ગુણાકાર કરો.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
કારણ કે \frac{3x\times 3x}{3x} અને \frac{1}{3x} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
3x\times 3x-1 માં ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
\frac{9x^{2}-1}{3x} નો ઘાત વધારવા માટે, અંશ અને છેદ એમ બન્નેનો ઘાત વધારો અને પછી તેને વિભાજિત કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{3x}{3x} ને 3x વાર ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
કારણ કે \frac{3x\times 3x}{3x} અને \frac{1}{3x} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને ઍડ કર્યા દ્વારા ઍડ કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
3x\times 3x+1 માં ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{3x}{3x} ને 3x વાર ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
કારણ કે \frac{3x\times 3x}{3x} અને \frac{1}{3x} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
3x\times 3x-1 માં ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
ગુણક વારનો ગુણક અને ભાજક વારનો ભાજકથી ગુણાકાર કરીને \frac{9x^{2}-1}{3x} નો \frac{9x^{2}+1}{3x} વાર ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
x^{2} મેળવવા માટે x સાથે x નો ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
9 મેળવવા માટે 3 સાથે 3 નો ગુણાકાર કરો.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \left(3x\right)^{2} ને વિસ્તૃત કરો.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
કારણ કે \frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} અને \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right) માં ગુણાકાર કરો.
\frac{-18x^{2}+2}{9x^{2}}
81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1 માં સમાન પદોને સંયોજિત કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}