( { 2 }^{ x+1 } -1 = 1
x માટે ઉકેલો
x=0
x માટે ઉકેલો (જટિલ સમાધાન)
x=\frac{2\pi n_{1}i}{\ln(2)}
n_{1}\in \mathrm{Z}
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2^{x+1}-1=1
સમીકરણને ઉકેલવા માટે ઘાતાંક અને લઘુગુણકોના નિયમોનો ઉપયોગ કરો.
2^{x+1}=2
સમીકરણની બન્ને બાજુ 1 ઍડ કરો.
\log(2^{x+1})=\log(2)
સમીકરણની બન્ને બાજુનું લઘુગણક લો.
\left(x+1\right)\log(2)=\log(2)
ઘાટ પર વધારેલ સંખ્યાનું લઘુગણક સંખ્યાના લઘુગણકનું ઘાત વાર છે.
x+1=\frac{\log(2)}{\log(2)}
બન્ને બાજુનો \log(2) થી ભાગાકાર કરો.
x+1=\log_{2}\left(2\right)
આધાર પરિવર્તન સૂત્ર દ્વારા \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=1-1
સમીકરણની બન્ને બાજુથી 1 નો ઘટાડો કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}