x માટે ઉકેલો
x = \frac{\sqrt{273} + 9}{2} \approx 12.761355821
x=\frac{9-\sqrt{273}}{2}\approx -3.761355821
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
x^{2}-9x-48=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-48\right)}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે -9 ને, અને c માટે -48 ને બદલીને મૂકો.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-48\right)}}{2}
વર્ગ -9.
x=\frac{-\left(-9\right)±\sqrt{81+192}}{2}
-48 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-9\right)±\sqrt{273}}{2}
192 માં 81 ઍડ કરો.
x=\frac{9±\sqrt{273}}{2}
-9 નો વિરોધી 9 છે.
x=\frac{\sqrt{273}+9}{2}
હવે x=\frac{9±\sqrt{273}}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \sqrt{273} માં 9 ઍડ કરો.
x=\frac{9-\sqrt{273}}{2}
હવે x=\frac{9±\sqrt{273}}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 9 માંથી \sqrt{273} ને ઘટાડો.
x=\frac{\sqrt{273}+9}{2} x=\frac{9-\sqrt{273}}{2}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
x^{2}-9x-48=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
x^{2}-9x-48-\left(-48\right)=-\left(-48\right)
સમીકરણની બન્ને બાજુ 48 ઍડ કરો.
x^{2}-9x=-\left(-48\right)
સ્વયંમાંથી -48 ઘટાડવા પર 0 બચે.
x^{2}-9x=48
0 માંથી -48 ને ઘટાડો.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=48+\left(-\frac{9}{2}\right)^{2}
-9, x પદના ગુણાંકને, -\frac{9}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{9}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-9x+\frac{81}{4}=48+\frac{81}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{9}{2} નો વર્ગ કાઢો.
x^{2}-9x+\frac{81}{4}=\frac{273}{4}
\frac{81}{4} માં 48 ઍડ કરો.
\left(x-\frac{9}{2}\right)^{2}=\frac{273}{4}
અવયવ x^{2}-9x+\frac{81}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{273}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{9}{2}=\frac{\sqrt{273}}{2} x-\frac{9}{2}=-\frac{\sqrt{273}}{2}
સરળ બનાવો.
x=\frac{\sqrt{273}+9}{2} x=\frac{9-\sqrt{273}}{2}
સમીકરણની બન્ને બાજુ \frac{9}{2} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}