મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=1 ab=1\left(-42\right)=-42
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx-42 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,42 -2,21 -3,14 -6,7
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -42 આપે છે.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=7
સમાધાન એ જોડી છે જે સરવાળો 1 આપે છે.
\left(x^{2}-6x\right)+\left(7x-42\right)
x^{2}+x-42 ને \left(x^{2}-6x\right)+\left(7x-42\right) તરીકે ફરીથી લખો.
x\left(x-6\right)+7\left(x-6\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 7 ના અવયવ પાડો.
\left(x-6\right)\left(x+7\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-6 ના અવયવ પાડો.
x^{2}+x-42=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-1±\sqrt{1^{2}-4\left(-42\right)}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-1±\sqrt{1-4\left(-42\right)}}{2}
વર્ગ 1.
x=\frac{-1±\sqrt{1+168}}{2}
-42 ને -4 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{169}}{2}
168 માં 1 ઍડ કરો.
x=\frac{-1±13}{2}
169 નો વર્ગ મૂળ લો.
x=\frac{12}{2}
હવે x=\frac{-1±13}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 13 માં -1 ઍડ કરો.
x=6
12 નો 2 થી ભાગાકાર કરો.
x=-\frac{14}{2}
હવે x=\frac{-1±13}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી 13 ને ઘટાડો.
x=-7
-14 નો 2 થી ભાગાકાર કરો.
x^{2}+x-42=\left(x-6\right)\left(x-\left(-7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 6 અને x_{2} ને બદલે -7 મૂકો.
x^{2}+x-42=\left(x-6\right)\left(x+7\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.