મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=5 ab=1\left(-36\right)=-36
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx-36 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,36 -2,18 -3,12 -4,9 -6,6
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઘનાત્મક હોવાથી, ઘનાત્મક સંખ્યામાં ઋણાત્મક કરતાં વધુ સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -36 આપે છે.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-4 b=9
સમાધાન એ જોડી છે જે સરવાળો 5 આપે છે.
\left(x^{2}-4x\right)+\left(9x-36\right)
x^{2}+5x-36 ને \left(x^{2}-4x\right)+\left(9x-36\right) તરીકે ફરીથી લખો.
x\left(x-4\right)+9\left(x-4\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 9 ના અવયવ પાડો.
\left(x-4\right)\left(x+9\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-4 ના અવયવ પાડો.
x^{2}+5x-36=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-5±\sqrt{5^{2}-4\left(-36\right)}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-5±\sqrt{25-4\left(-36\right)}}{2}
વર્ગ 5.
x=\frac{-5±\sqrt{25+144}}{2}
-36 ને -4 વાર ગુણાકાર કરો.
x=\frac{-5±\sqrt{169}}{2}
144 માં 25 ઍડ કરો.
x=\frac{-5±13}{2}
169 નો વર્ગ મૂળ લો.
x=\frac{8}{2}
હવે x=\frac{-5±13}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 13 માં -5 ઍડ કરો.
x=4
8 નો 2 થી ભાગાકાર કરો.
x=-\frac{18}{2}
હવે x=\frac{-5±13}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -5 માંથી 13 ને ઘટાડો.
x=-9
-18 નો 2 થી ભાગાકાર કરો.
x^{2}+5x-36=\left(x-4\right)\left(x-\left(-9\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 4 અને x_{2} ને બદલે -9 મૂકો.
x^{2}+5x-36=\left(x-4\right)\left(x+9\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.