મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x^{2}+2x-3+x^{2}>0
બંને સાઇડ્સ માટે x^{2} ઍડ કરો.
2x^{2}+2x-3>0
2x^{2} ને મેળવવા માટે x^{2} અને x^{2} ને એકસાથે કરો.
2x^{2}+2x-3=0
અસમાનતાને ઉકેલવા માટે, અવયવ ડાબા હાથ તરફ. વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-3\right)}}{2\times 2}
ફોર્મના બધા સમીકરણો ax^{2}+bx+c=0 ને દ્વિઘાત સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરીને હલ કરી શકાય છે. દ્વિઘાત સૂત્રમાં a માટે 2, b માટે 2 અને c માટે -3 સબસ્ટિટ્યુટ છે.
x=\frac{-2±2\sqrt{7}}{4}
ગણતરી કરશો નહીં.
x=\frac{\sqrt{7}-1}{2} x=\frac{-\sqrt{7}-1}{2}
જ્યારે ± વત્તા અને ± ઓછા હોય સમીકરણ x=\frac{-2±2\sqrt{7}}{4} ને ઉકેલો.
2\left(x-\frac{\sqrt{7}-1}{2}\right)\left(x-\frac{-\sqrt{7}-1}{2}\right)>0
મેળવેલા સમાધાનનો ઉપયોગ કરીને અસમાનતાને ફરીથી લખો.
x-\frac{\sqrt{7}-1}{2}<0 x-\frac{-\sqrt{7}-1}{2}<0
ગુણનફળ ધનાત્મક હોવા માટે, x-\frac{\sqrt{7}-1}{2} અને x-\frac{-\sqrt{7}-1}{2} બન્ને ઋણાત્મક અથવા બન્ને ધનાત્મક હોવા જોઈએ. જ્યારે કેસ x-\frac{\sqrt{7}-1}{2} અને x-\frac{-\sqrt{7}-1}{2} બન્ને ઋણાત્મક હોય ત્યારે ધ્યાનમાં લો.
x<\frac{-\sqrt{7}-1}{2}
બન્ને અસમાનતાને સંતોષતું સમાધાન x<\frac{-\sqrt{7}-1}{2} છે.
x-\frac{-\sqrt{7}-1}{2}>0 x-\frac{\sqrt{7}-1}{2}>0
જ્યારે કેસ x-\frac{\sqrt{7}-1}{2} અને x-\frac{-\sqrt{7}-1}{2} બંને ધનાત્મક હોય ત્યારે ધ્યાનમાં લો.
x>\frac{\sqrt{7}-1}{2}
બન્ને અસમાનતાને સંતોષતું સમાધાન x>\frac{\sqrt{7}-1}{2} છે.
x<\frac{-\sqrt{7}-1}{2}\text{; }x>\frac{\sqrt{7}-1}{2}
અંતિમ સમાધાન એ મેળવેલા સમાધાનોનો સંઘ છે.