મુખ્ય સમાવિષ્ટ પર જાવ
w.r.t.β ભેદ પાડો
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\frac{\mathrm{d}}{\mathrm{d}\beta }(\sin(\beta ))=\left(\lim_{h\to 0}\frac{\sin(\beta +h)-\sin(\beta )}{h}\right)
f\left(x\right) ફંક્શન માટે, વ્યુત્પન્ન \frac{f\left(x+h\right)-f\left(x\right)}{h}ની મર્યાદા છે કેમ કે h 0 પર જાઈ છે, જો તે મર્યાદા હાજર રહેશે.
\lim_{h\to 0}\frac{\sin(h+\beta )-\sin(\beta )}{h}
જ્યા માટે કુલ સૂત્રનો ઉપયોગ કરો.
\lim_{h\to 0}\frac{\sin(\beta )\left(\cos(h)-1\right)+\cos(\beta )\sin(h)}{h}
\sin(\beta ) નો અવયવ પાડો.
\left(\lim_{h\to 0}\sin(\beta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\beta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
મર્યાદાને ફરીથી લખો.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
\beta અચલ છે એ હકીકતનો ઉપયોગ કરો જ્યારે h તરીકે ગણના મર્યાદા 0 પર જાય.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )
મર્યાદા \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } 1 છે.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
મર્યાદા \lim_{h\to 0}\frac{\cos(h)-1}{h} નું મૂલ્યાંકન કરવા માટે, પહેલા ગુણક અને ભાજકનો \cos(h)+1 સાથે ગુણાકાર કરો.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)-1 ને \cos(h)+1 વાર ગુણાકાર કરો.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
પાયથાગોરિયન ઓળખનો ઉપયોગ કરો.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
મર્યાદાને ફરીથી લખો.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
મર્યાદા \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } 1 છે.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} 0 પર સળંગ છે એ હકીકતનો ઉપયોગ કરો.
\cos(\beta )
પદાવલિ \sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta ) માં મૂલ્ય 0 ને પ્રતિસ્થાપન કરો.