a, b માટે ઉકેલો
a=-5
b=25
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=20,6a+2b=20
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
a+b=20
એક સમીકરણની પસંદગી કરો અને તેને a ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને a માટે ઉકેલો.
a=-b+20
સમીકરણની બન્ને બાજુથી b નો ઘટાડો કરો.
6\left(-b+20\right)+2b=20
અન્ય સમીકરણ, 6a+2b=20 માં a માટે -b+20 નો પ્રતિસ્થાપન કરો.
-6b+120+2b=20
-b+20 ને 6 વાર ગુણાકાર કરો.
-4b+120=20
2b માં -6b ઍડ કરો.
-4b=-100
સમીકરણની બન્ને બાજુથી 120 નો ઘટાડો કરો.
b=25
બન્ને બાજુનો -4 થી ભાગાકાર કરો.
a=-25+20
a=-b+20માં b માટે 25 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું a માટે ઉકેલો.
a=-5
-25 માં 20 ઍડ કરો.
a=-5,b=25
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
a+b=20,6a+2b=20
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\6&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}1&1\\6&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
\left(\begin{matrix}1&1\\6&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-6}&-\frac{1}{2-6}\\-\frac{6}{2-6}&\frac{1}{2-6}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{3}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 20+\frac{1}{4}\times 20\\\frac{3}{2}\times 20-\frac{1}{4}\times 20\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-5\\25\end{matrix}\right)
અંકગણિતીય કરો.
a=-5,b=25
મેટ્રિક્સ ઘટકો a અને b ને કાઢો.
a+b=20,6a+2b=20
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
6a+6b=6\times 20,6a+2b=20
a અને 6a ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
6a+6b=120,6a+2b=20
સરળ બનાવો.
6a-6a+6b-2b=120-20
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6a+6b=120માંથી 6a+2b=20 ને ઘટાડો.
6b-2b=120-20
-6a માં 6a ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6a અને -6a ને વિભાજિત કરો.
4b=120-20
-2b માં 6b ઍડ કરો.
4b=100
-20 માં 120 ઍડ કરો.
b=25
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
6a+2\times 25=20
6a+2b=20માં b માટે 25 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું a માટે ઉકેલો.
6a+50=20
25 ને 2 વાર ગુણાકાર કરો.
6a=-30
સમીકરણની બન્ને બાજુથી 50 નો ઘટાડો કરો.
a=-5
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
a=-5,b=25
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}