x, y માટે ઉકેલો
x = -\frac{40}{11} = -3\frac{7}{11} \approx -3.636363636
y = \frac{445}{11} = 40\frac{5}{11} \approx 40.454545455
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
32x+3y=5,3x+2y=70
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
32x+3y=5
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
32x=-3y+5
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{32}\left(-3y+5\right)
બન્ને બાજુનો 32 થી ભાગાકાર કરો.
x=-\frac{3}{32}y+\frac{5}{32}
-3y+5 ને \frac{1}{32} વાર ગુણાકાર કરો.
3\left(-\frac{3}{32}y+\frac{5}{32}\right)+2y=70
અન્ય સમીકરણ, 3x+2y=70 માં x માટે \frac{-3y+5}{32} નો પ્રતિસ્થાપન કરો.
-\frac{9}{32}y+\frac{15}{32}+2y=70
\frac{-3y+5}{32} ને 3 વાર ગુણાકાર કરો.
\frac{55}{32}y+\frac{15}{32}=70
2y માં -\frac{9y}{32} ઍડ કરો.
\frac{55}{32}y=\frac{2225}{32}
સમીકરણની બન્ને બાજુથી \frac{15}{32} નો ઘટાડો કરો.
y=\frac{445}{11}
સમીકરણની બન્ને બાજુનો \frac{55}{32} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{32}\times \frac{445}{11}+\frac{5}{32}
x=-\frac{3}{32}y+\frac{5}{32}માં y માટે \frac{445}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{1335}{352}+\frac{5}{32}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{3}{32} નો \frac{445}{11} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{40}{11}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{1335}{352} માં \frac{5}{32} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{40}{11},y=\frac{445}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
32x+3y=5,3x+2y=70
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}32&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\70\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}32&3\\3&2\end{matrix}\right))\left(\begin{matrix}32&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}32&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
\left(\begin{matrix}32&3\\3&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}32&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}32&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{32\times 2-3\times 3}&-\frac{3}{32\times 2-3\times 3}\\-\frac{3}{32\times 2-3\times 3}&\frac{32}{32\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{55}&-\frac{3}{55}\\-\frac{3}{55}&\frac{32}{55}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{55}\times 5-\frac{3}{55}\times 70\\-\frac{3}{55}\times 5+\frac{32}{55}\times 70\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{40}{11}\\\frac{445}{11}\end{matrix}\right)
અંકગણિતીય કરો.
x=-\frac{40}{11},y=\frac{445}{11}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
32x+3y=5,3x+2y=70
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 32x+3\times 3y=3\times 5,32\times 3x+32\times 2y=32\times 70
32x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 32 સાથે ગુણાકાર કરો.
96x+9y=15,96x+64y=2240
સરળ બનાવો.
96x-96x+9y-64y=15-2240
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 96x+9y=15માંથી 96x+64y=2240 ને ઘટાડો.
9y-64y=15-2240
-96x માં 96x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 96x અને -96x ને વિભાજિત કરો.
-55y=15-2240
-64y માં 9y ઍડ કરો.
-55y=-2225
-2240 માં 15 ઍડ કરો.
y=\frac{445}{11}
બન્ને બાજુનો -55 થી ભાગાકાર કરો.
3x+2\times \frac{445}{11}=70
3x+2y=70માં y માટે \frac{445}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x+\frac{890}{11}=70
\frac{445}{11} ને 2 વાર ગુણાકાર કરો.
3x=-\frac{120}{11}
સમીકરણની બન્ને બાજુથી \frac{890}{11} નો ઘટાડો કરો.
x=-\frac{40}{11}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{40}{11},y=\frac{445}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}