મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+4y=56,x+y=20
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+4y=56
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-4y+56
સમીકરણની બન્ને બાજુથી 4y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-4y+56\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-2y+28
-4y+56 ને \frac{1}{2} વાર ગુણાકાર કરો.
-2y+28+y=20
અન્ય સમીકરણ, x+y=20 માં x માટે -2y+28 નો પ્રતિસ્થાપન કરો.
-y+28=20
y માં -2y ઍડ કરો.
-y=-8
સમીકરણની બન્ને બાજુથી 28 નો ઘટાડો કરો.
y=8
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=-2\times 8+28
x=-2y+28માં y માટે 8 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-16+28
8 ને -2 વાર ગુણાકાર કરો.
x=12
-16 માં 28 ઍડ કરો.
x=12,y=8
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+4y=56,x+y=20
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}56\\20\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}56\\20\end{matrix}\right)
\left(\begin{matrix}2&4\\1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}56\\20\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}56\\20\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4}&-\frac{4}{2-4}\\-\frac{1}{2-4}&\frac{2}{2-4}\end{matrix}\right)\left(\begin{matrix}56\\20\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&2\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}56\\20\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 56+2\times 20\\\frac{1}{2}\times 56-20\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
અંકગણિતીય કરો.
x=12,y=8
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+4y=56,x+y=20
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x+4y=56,2x+2y=2\times 20
2x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
2x+4y=56,2x+2y=40
સરળ બનાવો.
2x-2x+4y-2y=56-40
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x+4y=56માંથી 2x+2y=40 ને ઘટાડો.
4y-2y=56-40
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
2y=56-40
-2y માં 4y ઍડ કરો.
2y=16
-40 માં 56 ઍડ કરો.
y=8
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x+8=20
x+y=20માં y માટે 8 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=12
સમીકરણની બન્ને બાજુથી 8 નો ઘટાડો કરો.
x=12,y=8
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.