મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+3y=10,-3x+y=18
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+3y=10
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-3y+10
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-3y+10\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{3}{2}y+5
-3y+10 ને \frac{1}{2} વાર ગુણાકાર કરો.
-3\left(-\frac{3}{2}y+5\right)+y=18
અન્ય સમીકરણ, -3x+y=18 માં x માટે -\frac{3y}{2}+5 નો પ્રતિસ્થાપન કરો.
\frac{9}{2}y-15+y=18
-\frac{3y}{2}+5 ને -3 વાર ગુણાકાર કરો.
\frac{11}{2}y-15=18
y માં \frac{9y}{2} ઍડ કરો.
\frac{11}{2}y=33
સમીકરણની બન્ને બાજુ 15 ઍડ કરો.
y=6
સમીકરણની બન્ને બાજુનો \frac{11}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{2}\times 6+5
x=-\frac{3}{2}y+5માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-9+5
6 ને -\frac{3}{2} વાર ગુણાકાર કરો.
x=-4
-9 માં 5 ઍડ કરો.
x=-4,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+3y=10,-3x+y=18
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&3\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\18\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}2&3\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}10\\18\end{matrix}\right)
\left(\begin{matrix}2&3\\-3&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}10\\18\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&1\end{matrix}\right))\left(\begin{matrix}10\\18\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-3\right)}&-\frac{3}{2-3\left(-3\right)}\\-\frac{-3}{2-3\left(-3\right)}&\frac{2}{2-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\18\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&-\frac{3}{11}\\\frac{3}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}10\\18\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 10-\frac{3}{11}\times 18\\\frac{3}{11}\times 10+\frac{2}{11}\times 18\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\6\end{matrix}\right)
અંકગણિતીય કરો.
x=-4,y=6
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+3y=10,-3x+y=18
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-3\times 2x-3\times 3y=-3\times 10,2\left(-3\right)x+2y=2\times 18
2x અને -3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
-6x-9y=-30,-6x+2y=36
સરળ બનાવો.
-6x+6x-9y-2y=-30-36
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -6x-9y=-30માંથી -6x+2y=36 ને ઘટાડો.
-9y-2y=-30-36
6x માં -6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -6x અને 6x ને વિભાજિત કરો.
-11y=-30-36
-2y માં -9y ઍડ કરો.
-11y=-66
-36 માં -30 ઍડ કરો.
y=6
બન્ને બાજુનો -11 થી ભાગાકાર કરો.
-3x+6=18
-3x+y=18માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-3x=12
સમીકરણની બન્ને બાજુથી 6 નો ઘટાડો કરો.
x=-4
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
x=-4,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.