મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-x=-7
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y+2x=-1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 2x ઍડ કરો.
y-x=-7,y+2x=-1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-x=-7
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=x-7
સમીકરણની બન્ને બાજુ x ઍડ કરો.
x-7+2x=-1
અન્ય સમીકરણ, y+2x=-1 માં y માટે x-7 નો પ્રતિસ્થાપન કરો.
3x-7=-1
2x માં x ઍડ કરો.
3x=6
સમીકરણની બન્ને બાજુ 7 ઍડ કરો.
x=2
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
y=2-7
y=x-7માં x માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=-5
2 માં -7 ઍડ કરો.
y=-5,x=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-x=-7
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y+2x=-1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 2x ઍડ કરો.
y-x=-7,y+2x=-1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-7\\-1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{1}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-7\\-1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-7\\-1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-7\right)+\frac{1}{3}\left(-1\right)\\-\frac{1}{3}\left(-7\right)+\frac{1}{3}\left(-1\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
અંકગણિતીય કરો.
y=-5,x=2
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-x=-7
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y+2x=-1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 2x ઍડ કરો.
y-x=-7,y+2x=-1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y-x-2x=-7+1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y-x=-7માંથી y+2x=-1 ને ઘટાડો.
-x-2x=-7+1
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-3x=-7+1
-2x માં -x ઍડ કરો.
-3x=-6
1 માં -7 ઍડ કરો.
x=2
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
y+2\times 2=-1
y+2x=-1માં x માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y+4=-1
2 ને 2 વાર ગુણાકાર કરો.
y=-5
સમીકરણની બન્ને બાજુથી 4 નો ઘટાડો કરો.
y=-5,x=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.