મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-4x=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 4x ઘટાડો.
y-3x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3x ઘટાડો.
y-4x=0,y-3x=-1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-4x=0
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=4x
સમીકરણની બન્ને બાજુ 4x ઍડ કરો.
4x-3x=-1
અન્ય સમીકરણ, y-3x=-1 માં y માટે 4x નો પ્રતિસ્થાપન કરો.
x=-1
-3x માં 4x ઍડ કરો.
y=4\left(-1\right)
y=4xમાં x માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=-4
-1 ને 4 વાર ગુણાકાર કરો.
y=-4,x=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-4x=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 4x ઘટાડો.
y-3x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3x ઘટાડો.
y-4x=0,y-3x=-1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-4\right)}&-\frac{-4}{-3-\left(-4\right)}\\-\frac{1}{-3-\left(-4\right)}&\frac{1}{-3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ માટે \left(\begin{matrix}a&b\\c&d\end{matrix}\right), પ્રતિલોભ મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શક્યે છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3&4\\-1&1\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\left(-1\right)\\-1\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
અંકગણિતીય કરો.
y=-4,x=-1
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-4x=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 4x ઘટાડો.
y-3x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3x ઘટાડો.
y-4x=0,y-3x=-1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y-4x+3x=1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y-4x=0માંથી y-3x=-1 ને ઘટાડો.
-4x+3x=1
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-x=1
3x માં -4x ઍડ કરો.
x=-1
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
y-3\left(-1\right)=-1
y-3x=-1માં x માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y+3=-1
-1 ને -3 વાર ગુણાકાર કરો.
y=-4
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
y=-4,x=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.