મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-3x=-4
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3x ઘટાડો.
y-x=1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-3x=-4,y-x=1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-3x=-4
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=3x-4
સમીકરણની બન્ને બાજુ 3x ઍડ કરો.
3x-4-x=1
અન્ય સમીકરણ, y-x=1 માં y માટે 3x-4 નો પ્રતિસ્થાપન કરો.
2x-4=1
-x માં 3x ઍડ કરો.
2x=5
સમીકરણની બન્ને બાજુ 4 ઍડ કરો.
x=\frac{5}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
y=3\times \frac{5}{2}-4
y=3x-4માં x માટે \frac{5}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=\frac{15}{2}-4
\frac{5}{2} ને 3 વાર ગુણાકાર કરો.
y=\frac{7}{2}
\frac{15}{2} માં -4 ઍડ કરો.
y=\frac{7}{2},x=\frac{5}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-3x=-4
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3x ઘટાડો.
y-x=1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-3x=-4,y-x=1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-3\right)}&-\frac{-3}{-1-\left(-3\right)}\\-\frac{1}{-1-\left(-3\right)}&\frac{1}{-1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-4\right)+\frac{3}{2}\\-\frac{1}{2}\left(-4\right)+\frac{1}{2}\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\\frac{5}{2}\end{matrix}\right)
અંકગણિતીય કરો.
y=\frac{7}{2},x=\frac{5}{2}
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-3x=-4
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3x ઘટાડો.
y-x=1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-3x=-4,y-x=1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y-3x+x=-4-1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y-3x=-4માંથી y-x=1 ને ઘટાડો.
-3x+x=-4-1
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-2x=-4-1
x માં -3x ઍડ કરો.
-2x=-5
-1 માં -4 ઍડ કરો.
x=\frac{5}{2}
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
y-\frac{5}{2}=1
y-x=1માં x માટે \frac{5}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=\frac{7}{2}
સમીકરણની બન્ને બાજુ \frac{5}{2} ઍડ કરો.
y=\frac{7}{2},x=\frac{5}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.