મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y+2x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 2x ઍડ કરો.
y+2x=0,6y+4x=24
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y+2x=0
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=-2x
સમીકરણની બન્ને બાજુથી 2x નો ઘટાડો કરો.
6\left(-2\right)x+4x=24
અન્ય સમીકરણ, 6y+4x=24 માં y માટે -2x નો પ્રતિસ્થાપન કરો.
-12x+4x=24
-2x ને 6 વાર ગુણાકાર કરો.
-8x=24
4x માં -12x ઍડ કરો.
x=-3
બન્ને બાજુનો -8 થી ભાગાકાર કરો.
y=-2\left(-3\right)
y=-2xમાં x માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=6
-3 ને -2 વાર ગુણાકાર કરો.
y=6,x=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y+2x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 2x ઍડ કરો.
y+2x=0,6y+4x=24
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&2\\6&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\24\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}1&2\\6&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
\left(\begin{matrix}1&2\\6&4\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 6}&-\frac{2}{4-2\times 6}\\-\frac{6}{4-2\times 6}&\frac{1}{4-2\times 6}\end{matrix}\right)\left(\begin{matrix}0\\24\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\24\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 24\\-\frac{1}{8}\times 24\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
અંકગણિતીય કરો.
y=6,x=-3
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y+2x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 2x ઍડ કરો.
y+2x=0,6y+4x=24
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
6y+6\times 2x=0,6y+4x=24
y અને 6y ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
6y+12x=0,6y+4x=24
સરળ બનાવો.
6y-6y+12x-4x=-24
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6y+12x=0માંથી 6y+4x=24 ને ઘટાડો.
12x-4x=-24
-6y માં 6y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6y અને -6y ને વિભાજિત કરો.
8x=-24
-4x માં 12x ઍડ કરો.
x=-3
બન્ને બાજુનો 8 થી ભાગાકાર કરો.
6y+4\left(-3\right)=24
6y+4x=24માં x માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
6y-12=24
-3 ને 4 વાર ગુણાકાર કરો.
6y=36
સમીકરણની બન્ને બાજુ 12 ઍડ કરો.
y=6
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
y=6,x=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.