મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-\frac{1}{3}x=6
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{3}x ઘટાડો.
y-\frac{1}{9}x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{9}x ઘટાડો.
y-\frac{1}{3}x=6,y-\frac{1}{9}x=-1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-\frac{1}{3}x=6
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=\frac{1}{3}x+6
સમીકરણની બન્ને બાજુ \frac{x}{3} ઍડ કરો.
\frac{1}{3}x+6-\frac{1}{9}x=-1
અન્ય સમીકરણ, y-\frac{1}{9}x=-1 માં y માટે \frac{x}{3}+6 નો પ્રતિસ્થાપન કરો.
\frac{2}{9}x+6=-1
-\frac{x}{9} માં \frac{x}{3} ઍડ કરો.
\frac{2}{9}x=-7
સમીકરણની બન્ને બાજુથી 6 નો ઘટાડો કરો.
x=-\frac{63}{2}
સમીકરણની બન્ને બાજુનો \frac{2}{9} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
y=\frac{1}{3}\left(-\frac{63}{2}\right)+6
y=\frac{1}{3}x+6માં x માટે -\frac{63}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=-\frac{21}{2}+6
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{1}{3} નો -\frac{63}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
y=-\frac{9}{2}
-\frac{21}{2} માં 6 ઍડ કરો.
y=-\frac{9}{2},x=-\frac{63}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-\frac{1}{3}x=6
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{3}x ઘટાડો.
y-\frac{1}{9}x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{9}x ઘટાડો.
y-\frac{1}{3}x=6,y-\frac{1}{9}x=-1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{9}}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}\\-\frac{1}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}&\frac{1}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\-\frac{9}{2}&\frac{9}{2}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 6+\frac{3}{2}\left(-1\right)\\-\frac{9}{2}\times 6+\frac{9}{2}\left(-1\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{2}\\-\frac{63}{2}\end{matrix}\right)
અંકગણિતીય કરો.
y=-\frac{9}{2},x=-\frac{63}{2}
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-\frac{1}{3}x=6
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{3}x ઘટાડો.
y-\frac{1}{9}x=-1
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{9}x ઘટાડો.
y-\frac{1}{3}x=6,y-\frac{1}{9}x=-1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y-\frac{1}{3}x+\frac{1}{9}x=6+1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y-\frac{1}{3}x=6માંથી y-\frac{1}{9}x=-1 ને ઘટાડો.
-\frac{1}{3}x+\frac{1}{9}x=6+1
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-\frac{2}{9}x=6+1
\frac{x}{9} માં -\frac{x}{3} ઍડ કરો.
-\frac{2}{9}x=7
1 માં 6 ઍડ કરો.
x=-\frac{63}{2}
સમીકરણની બન્ને બાજુનો -\frac{2}{9} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
y-\frac{1}{9}\left(-\frac{63}{2}\right)=-1
y-\frac{1}{9}x=-1માં x માટે -\frac{63}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y+\frac{7}{2}=-1
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{1}{9} નો -\frac{63}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
y=-\frac{9}{2}
સમીકરણની બન્ને બાજુથી \frac{7}{2} નો ઘટાડો કરો.
y=-\frac{9}{2},x=-\frac{63}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.