મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x+y=39,x+2y=126
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+y=39
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-y+39
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
-y+39+2y=126
અન્ય સમીકરણ, x+2y=126 માં x માટે -y+39 નો પ્રતિસ્થાપન કરો.
y+39=126
2y માં -y ઍડ કરો.
y=87
સમીકરણની બન્ને બાજુથી 39 નો ઘટાડો કરો.
x=-87+39
x=-y+39માં y માટે 87 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-48
-87 માં 39 ઍડ કરો.
x=-48,y=87
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+y=39,x+2y=126
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\126\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
\left(\begin{matrix}1&1\\1&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{1}{2-1}\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 39-126\\-39+126\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-48\\87\end{matrix}\right)
અંકગણિતીય કરો.
x=-48,y=87
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+y=39,x+2y=126
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
x-x+y-2y=39-126
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી x+y=39માંથી x+2y=126 ને ઘટાડો.
y-2y=39-126
-x માં x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો x અને -x ને વિભાજિત કરો.
-y=39-126
-2y માં y ઍડ કરો.
-y=-87
-126 માં 39 ઍડ કરો.
y=87
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x+2\times 87=126
x+2y=126માં y માટે 87 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x+174=126
87 ને 2 વાર ગુણાકાર કરો.
x=-48
સમીકરણની બન્ને બાજુથી 174 નો ઘટાડો કરો.
x=-48,y=87
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.