મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x+y=17,2.6x+3.5y=55
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+y=17
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-y+17
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
2.6\left(-y+17\right)+3.5y=55
અન્ય સમીકરણ, 2.6x+3.5y=55 માં x માટે -y+17 નો પ્રતિસ્થાપન કરો.
-2.6y+44.2+3.5y=55
-y+17 ને 2.6 વાર ગુણાકાર કરો.
0.9y+44.2=55
\frac{7y}{2} માં -\frac{13y}{5} ઍડ કરો.
0.9y=10.8
સમીકરણની બન્ને બાજુથી 44.2 નો ઘટાડો કરો.
y=12
સમીકરણની બન્ને બાજુનો 0.9 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-12+17
x=-y+17માં y માટે 12 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=5
-12 માં 17 ઍડ કરો.
x=5,y=12
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+y=17,2.6x+3.5y=55
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\55\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3.5}{3.5-2.6}&-\frac{1}{3.5-2.6}\\-\frac{2.6}{3.5-2.6}&\frac{1}{3.5-2.6}\end{matrix}\right)\left(\begin{matrix}17\\55\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{9}&-\frac{10}{9}\\-\frac{26}{9}&\frac{10}{9}\end{matrix}\right)\left(\begin{matrix}17\\55\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{9}\times 17-\frac{10}{9}\times 55\\-\frac{26}{9}\times 17+\frac{10}{9}\times 55\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\12\end{matrix}\right)
અંકગણિતીય કરો.
x=5,y=12
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+y=17,2.6x+3.5y=55
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2.6x+2.6y=2.6\times 17,2.6x+3.5y=55
x અને \frac{13x}{5} ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2.6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
2.6x+2.6y=44.2,2.6x+3.5y=55
સરળ બનાવો.
2.6x-2.6x+2.6y-3.5y=44.2-55
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2.6x+2.6y=44.2માંથી 2.6x+3.5y=55 ને ઘટાડો.
2.6y-3.5y=44.2-55
-\frac{13x}{5} માં \frac{13x}{5} ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો \frac{13x}{5} અને -\frac{13x}{5} ને વિભાજિત કરો.
-0.9y=44.2-55
-\frac{7y}{2} માં \frac{13y}{5} ઍડ કરો.
-0.9y=-10.8
-55 માં 44.2 ઍડ કરો.
y=12
સમીકરણની બન્ને બાજુનો -0.9 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
2.6x+3.5\times 12=55
2.6x+3.5y=55માં y માટે 12 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2.6x+42=55
12 ને 3.5 વાર ગુણાકાર કરો.
2.6x=13
સમીકરણની બન્ને બાજુથી 42 નો ઘટાડો કરો.
x=5
સમીકરણની બન્ને બાજુનો 2.6 થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=5,y=12
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.