મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y+4x=1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 4x ઍડ કરો.
x+3y=14,4x+y=1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+3y=14
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-3y+14
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
4\left(-3y+14\right)+y=1
અન્ય સમીકરણ, 4x+y=1 માં x માટે -3y+14 નો પ્રતિસ્થાપન કરો.
-12y+56+y=1
-3y+14 ને 4 વાર ગુણાકાર કરો.
-11y+56=1
y માં -12y ઍડ કરો.
-11y=-55
સમીકરણની બન્ને બાજુથી 56 નો ઘટાડો કરો.
y=5
બન્ને બાજુનો -11 થી ભાગાકાર કરો.
x=-3\times 5+14
x=-3y+14માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-15+14
5 ને -3 વાર ગુણાકાર કરો.
x=-1
-15 માં 14 ઍડ કરો.
x=-1,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y+4x=1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 4x ઍડ કરો.
x+3y=14,4x+y=1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}1&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
\left(\begin{matrix}1&3\\4&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\times 4}&-\frac{3}{1-3\times 4}\\-\frac{4}{1-3\times 4}&\frac{1}{1-3\times 4}\end{matrix}\right)\left(\begin{matrix}14\\1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{3}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}14\\1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\times 14+\frac{3}{11}\\\frac{4}{11}\times 14-\frac{1}{11}\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
અંકગણિતીય કરો.
x=-1,y=5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
y+4x=1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 4x ઍડ કરો.
x+3y=14,4x+y=1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4x+4\times 3y=4\times 14,4x+y=1
x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
4x+12y=56,4x+y=1
સરળ બનાવો.
4x-4x+12y-y=56-1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 4x+12y=56માંથી 4x+y=1 ને ઘટાડો.
12y-y=56-1
-4x માં 4x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 4x અને -4x ને વિભાજિત કરો.
11y=56-1
-y માં 12y ઍડ કરો.
11y=55
-1 માં 56 ઍડ કરો.
y=5
બન્ને બાજુનો 11 થી ભાગાકાર કરો.
4x+5=1
4x+y=1માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x=-4
સમીકરણની બન્ને બાજુથી 5 નો ઘટાડો કરો.
x=-1
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-1,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.