મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x+2y=10,2x+3y=17
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+2y=10
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-2y+10
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
2\left(-2y+10\right)+3y=17
અન્ય સમીકરણ, 2x+3y=17 માં x માટે -2y+10 નો પ્રતિસ્થાપન કરો.
-4y+20+3y=17
-2y+10 ને 2 વાર ગુણાકાર કરો.
-y+20=17
3y માં -4y ઍડ કરો.
-y=-3
સમીકરણની બન્ને બાજુથી 20 નો ઘટાડો કરો.
y=3
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=-2\times 3+10
x=-2y+10માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-6+10
3 ને -2 વાર ગુણાકાર કરો.
x=4
-6 માં 10 ઍડ કરો.
x=4,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+2y=10,2x+3y=17
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\17\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\17\end{matrix}\right)
\left(\begin{matrix}1&2\\2&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\17\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\17\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}10\\17\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}10\\17\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 10+2\times 17\\2\times 10-17\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
અંકગણિતીય કરો.
x=4,y=3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+2y=10,2x+3y=17
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x+2\times 2y=2\times 10,2x+3y=17
x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
2x+4y=20,2x+3y=17
સરળ બનાવો.
2x-2x+4y-3y=20-17
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x+4y=20માંથી 2x+3y=17 ને ઘટાડો.
4y-3y=20-17
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
y=20-17
-3y માં 4y ઍડ કરો.
y=3
-17 માં 20 ઍડ કરો.
2x+3\times 3=17
2x+3y=17માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+9=17
3 ને 3 વાર ગુણાકાર કરો.
2x=8
સમીકરણની બન્ને બાજુથી 9 નો ઘટાડો કરો.
x=4
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=4,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.