મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y+\frac{3}{2}x=-2
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
x+2y=-8,\frac{3}{2}x+y=-2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+2y=-8
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-2y-8
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
\frac{3}{2}\left(-2y-8\right)+y=-2
અન્ય સમીકરણ, \frac{3}{2}x+y=-2 માં x માટે -2y-8 નો પ્રતિસ્થાપન કરો.
-3y-12+y=-2
-2y-8 ને \frac{3}{2} વાર ગુણાકાર કરો.
-2y-12=-2
y માં -3y ઍડ કરો.
-2y=10
સમીકરણની બન્ને બાજુ 12 ઍડ કરો.
y=-5
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x=-2\left(-5\right)-8
x=-2y-8માં y માટે -5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=10-8
-5 ને -2 વાર ગુણાકાર કરો.
x=2
10 માં -8 ઍડ કરો.
x=2,y=-5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y+\frac{3}{2}x=-2
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
x+2y=-8,\frac{3}{2}x+y=-2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\-2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times \frac{3}{2}}&-\frac{2}{1-2\times \frac{3}{2}}\\-\frac{\frac{3}{2}}{1-2\times \frac{3}{2}}&\frac{1}{1-2\times \frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&1\\\frac{3}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-8\right)-2\\\frac{3}{4}\left(-8\right)-\frac{1}{2}\left(-2\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=-5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
y+\frac{3}{2}x=-2
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
x+2y=-8,\frac{3}{2}x+y=-2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
\frac{3}{2}x+\frac{3}{2}\times 2y=\frac{3}{2}\left(-8\right),\frac{3}{2}x+y=-2
x અને \frac{3x}{2} ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો \frac{3}{2} સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
\frac{3}{2}x+3y=-12,\frac{3}{2}x+y=-2
સરળ બનાવો.
\frac{3}{2}x-\frac{3}{2}x+3y-y=-12+2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી \frac{3}{2}x+3y=-12માંથી \frac{3}{2}x+y=-2 ને ઘટાડો.
3y-y=-12+2
-\frac{3x}{2} માં \frac{3x}{2} ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો \frac{3x}{2} અને -\frac{3x}{2} ને વિભાજિત કરો.
2y=-12+2
-y માં 3y ઍડ કરો.
2y=-10
2 માં -12 ઍડ કરો.
y=-5
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
\frac{3}{2}x-5=-2
\frac{3}{2}x+y=-2માં y માટે -5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
\frac{3}{2}x=3
સમીકરણની બન્ને બાજુ 5 ઍડ કરો.
x=2
સમીકરણની બન્ને બાજુનો \frac{3}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=2,y=-5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.