મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

8x+3y=5,3x+2y=70
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
8x+3y=5
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
8x=-3y+5
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{8}\left(-3y+5\right)
બન્ને બાજુનો 8 થી ભાગાકાર કરો.
x=-\frac{3}{8}y+\frac{5}{8}
-3y+5 ને \frac{1}{8} વાર ગુણાકાર કરો.
3\left(-\frac{3}{8}y+\frac{5}{8}\right)+2y=70
અન્ય સમીકરણ, 3x+2y=70 માં x માટે \frac{-3y+5}{8} નો પ્રતિસ્થાપન કરો.
-\frac{9}{8}y+\frac{15}{8}+2y=70
\frac{-3y+5}{8} ને 3 વાર ગુણાકાર કરો.
\frac{7}{8}y+\frac{15}{8}=70
2y માં -\frac{9y}{8} ઍડ કરો.
\frac{7}{8}y=\frac{545}{8}
સમીકરણની બન્ને બાજુથી \frac{15}{8} નો ઘટાડો કરો.
y=\frac{545}{7}
સમીકરણની બન્ને બાજુનો \frac{7}{8} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{8}\times \frac{545}{7}+\frac{5}{8}
x=-\frac{3}{8}y+\frac{5}{8}માં y માટે \frac{545}{7} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{1635}{56}+\frac{5}{8}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{3}{8} નો \frac{545}{7} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{200}{7}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{1635}{56} માં \frac{5}{8} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-\frac{200}{7},y=\frac{545}{7}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
8x+3y=5,3x+2y=70
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}8&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\70\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}8&3\\3&2\end{matrix}\right))\left(\begin{matrix}8&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
\left(\begin{matrix}8&3\\3&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{8\times 2-3\times 3}&-\frac{3}{8\times 2-3\times 3}\\-\frac{3}{8\times 2-3\times 3}&\frac{8}{8\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&-\frac{3}{7}\\-\frac{3}{7}&\frac{8}{7}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 5-\frac{3}{7}\times 70\\-\frac{3}{7}\times 5+\frac{8}{7}\times 70\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{200}{7}\\\frac{545}{7}\end{matrix}\right)
અંકગણિતીય કરો.
x=-\frac{200}{7},y=\frac{545}{7}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
8x+3y=5,3x+2y=70
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 8x+3\times 3y=3\times 5,8\times 3x+8\times 2y=8\times 70
8x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 8 સાથે ગુણાકાર કરો.
24x+9y=15,24x+16y=560
સરળ બનાવો.
24x-24x+9y-16y=15-560
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 24x+9y=15માંથી 24x+16y=560 ને ઘટાડો.
9y-16y=15-560
-24x માં 24x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 24x અને -24x ને વિભાજિત કરો.
-7y=15-560
-16y માં 9y ઍડ કરો.
-7y=-545
-560 માં 15 ઍડ કરો.
y=\frac{545}{7}
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
3x+2\times \frac{545}{7}=70
3x+2y=70માં y માટે \frac{545}{7} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x+\frac{1090}{7}=70
\frac{545}{7} ને 2 વાર ગુણાકાર કરો.
3x=-\frac{600}{7}
સમીકરણની બન્ને બાજુથી \frac{1090}{7} નો ઘટાડો કરો.
x=-\frac{200}{7}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{200}{7},y=\frac{545}{7}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.