મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

8x+2y=104,x+y=25
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
8x+2y=104
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
8x=-2y+104
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{8}\left(-2y+104\right)
બન્ને બાજુનો 8 થી ભાગાકાર કરો.
x=-\frac{1}{4}y+13
-2y+104 ને \frac{1}{8} વાર ગુણાકાર કરો.
-\frac{1}{4}y+13+y=25
અન્ય સમીકરણ, x+y=25 માં x માટે -\frac{y}{4}+13 નો પ્રતિસ્થાપન કરો.
\frac{3}{4}y+13=25
y માં -\frac{y}{4} ઍડ કરો.
\frac{3}{4}y=12
સમીકરણની બન્ને બાજુથી 13 નો ઘટાડો કરો.
y=16
સમીકરણની બન્ને બાજુનો \frac{3}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{4}\times 16+13
x=-\frac{1}{4}y+13માં y માટે 16 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-4+13
16 ને -\frac{1}{4} વાર ગુણાકાર કરો.
x=9
-4 માં 13 ઍડ કરો.
x=9,y=16
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
8x+2y=104,x+y=25
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}8&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}104\\25\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}8&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
\left(\begin{matrix}8&2\\1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-2}&-\frac{2}{8-2}\\-\frac{1}{8-2}&\frac{8}{8-2}\end{matrix}\right)\left(\begin{matrix}104\\25\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{3}\\-\frac{1}{6}&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}104\\25\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 104-\frac{1}{3}\times 25\\-\frac{1}{6}\times 104+\frac{4}{3}\times 25\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\16\end{matrix}\right)
અંકગણિતીય કરો.
x=9,y=16
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
8x+2y=104,x+y=25
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
8x+2y=104,8x+8y=8\times 25
8x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 8 સાથે ગુણાકાર કરો.
8x+2y=104,8x+8y=200
સરળ બનાવો.
8x-8x+2y-8y=104-200
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x+2y=104માંથી 8x+8y=200 ને ઘટાડો.
2y-8y=104-200
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
-6y=104-200
-8y માં 2y ઍડ કરો.
-6y=-96
-200 માં 104 ઍડ કરો.
y=16
બન્ને બાજુનો -6 થી ભાગાકાર કરો.
x+16=25
x+y=25માં y માટે 16 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=9
સમીકરણની બન્ને બાજુથી 16 નો ઘટાડો કરો.
x=9,y=16
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.