x, y માટે ઉકેલો
x=-3
y=1
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
7x+5y=-16,5x-2y=-17
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
7x+5y=-16
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
7x=-5y-16
સમીકરણની બન્ને બાજુથી 5y નો ઘટાડો કરો.
x=\frac{1}{7}\left(-5y-16\right)
બન્ને બાજુનો 7 થી ભાગાકાર કરો.
x=-\frac{5}{7}y-\frac{16}{7}
-5y-16 ને \frac{1}{7} વાર ગુણાકાર કરો.
5\left(-\frac{5}{7}y-\frac{16}{7}\right)-2y=-17
અન્ય સમીકરણ, 5x-2y=-17 માં x માટે \frac{-5y-16}{7} નો પ્રતિસ્થાપન કરો.
-\frac{25}{7}y-\frac{80}{7}-2y=-17
\frac{-5y-16}{7} ને 5 વાર ગુણાકાર કરો.
-\frac{39}{7}y-\frac{80}{7}=-17
-2y માં -\frac{25y}{7} ઍડ કરો.
-\frac{39}{7}y=-\frac{39}{7}
સમીકરણની બન્ને બાજુ \frac{80}{7} ઍડ કરો.
y=1
સમીકરણની બન્ને બાજુનો -\frac{39}{7} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{-5-16}{7}
x=-\frac{5}{7}y-\frac{16}{7}માં y માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-3
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{5}{7} માં -\frac{16}{7} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-3,y=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
7x+5y=-16,5x-2y=-17
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}7&5\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\-17\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}7&5\\5&-2\end{matrix}\right))\left(\begin{matrix}7&5\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\5&-2\end{matrix}\right))\left(\begin{matrix}-16\\-17\end{matrix}\right)
\left(\begin{matrix}7&5\\5&-2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\5&-2\end{matrix}\right))\left(\begin{matrix}-16\\-17\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\5&-2\end{matrix}\right))\left(\begin{matrix}-16\\-17\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7\left(-2\right)-5\times 5}&-\frac{5}{7\left(-2\right)-5\times 5}\\-\frac{5}{7\left(-2\right)-5\times 5}&\frac{7}{7\left(-2\right)-5\times 5}\end{matrix}\right)\left(\begin{matrix}-16\\-17\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{39}&\frac{5}{39}\\\frac{5}{39}&-\frac{7}{39}\end{matrix}\right)\left(\begin{matrix}-16\\-17\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{39}\left(-16\right)+\frac{5}{39}\left(-17\right)\\\frac{5}{39}\left(-16\right)-\frac{7}{39}\left(-17\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
અંકગણિતીય કરો.
x=-3,y=1
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
7x+5y=-16,5x-2y=-17
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5\times 7x+5\times 5y=5\left(-16\right),7\times 5x+7\left(-2\right)y=7\left(-17\right)
7x અને 5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 7 સાથે ગુણાકાર કરો.
35x+25y=-80,35x-14y=-119
સરળ બનાવો.
35x-35x+25y+14y=-80+119
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 35x+25y=-80માંથી 35x-14y=-119 ને ઘટાડો.
25y+14y=-80+119
-35x માં 35x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 35x અને -35x ને વિભાજિત કરો.
39y=-80+119
14y માં 25y ઍડ કરો.
39y=39
119 માં -80 ઍડ કરો.
y=1
બન્ને બાજુનો 39 થી ભાગાકાર કરો.
5x-2=-17
5x-2y=-17માં y માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
5x=-15
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
x=-3
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-3,y=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}