મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

5x-6y=10,2x+7y=3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x-6y=10
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=6y+10
સમીકરણની બન્ને બાજુ 6y ઍડ કરો.
x=\frac{1}{5}\left(6y+10\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{6}{5}y+2
6y+10 ને \frac{1}{5} વાર ગુણાકાર કરો.
2\left(\frac{6}{5}y+2\right)+7y=3
અન્ય સમીકરણ, 2x+7y=3 માં x માટે \frac{6y}{5}+2 નો પ્રતિસ્થાપન કરો.
\frac{12}{5}y+4+7y=3
\frac{6y}{5}+2 ને 2 વાર ગુણાકાર કરો.
\frac{47}{5}y+4=3
7y માં \frac{12y}{5} ઍડ કરો.
\frac{47}{5}y=-1
સમીકરણની બન્ને બાજુથી 4 નો ઘટાડો કરો.
y=-\frac{5}{47}
સમીકરણની બન્ને બાજુનો \frac{47}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{6}{5}\left(-\frac{5}{47}\right)+2
x=\frac{6}{5}y+2માં y માટે -\frac{5}{47} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{6}{47}+2
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{6}{5} નો -\frac{5}{47} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{88}{47}
-\frac{6}{47} માં 2 ઍડ કરો.
x=\frac{88}{47},y=-\frac{5}{47}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x-6y=10,2x+7y=3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&-6\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}5&-6\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}10\\3\end{matrix}\right)
\left(\begin{matrix}5&-6\\2&7\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}10\\3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}10\\3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-6\times 2\right)}&-\frac{-6}{5\times 7-\left(-6\times 2\right)}\\-\frac{2}{5\times 7-\left(-6\times 2\right)}&\frac{5}{5\times 7-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}10\\3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}&\frac{6}{47}\\-\frac{2}{47}&\frac{5}{47}\end{matrix}\right)\left(\begin{matrix}10\\3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}\times 10+\frac{6}{47}\times 3\\-\frac{2}{47}\times 10+\frac{5}{47}\times 3\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{88}{47}\\-\frac{5}{47}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{88}{47},y=-\frac{5}{47}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x-6y=10,2x+7y=3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 5x+2\left(-6\right)y=2\times 10,5\times 2x+5\times 7y=5\times 3
5x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
10x-12y=20,10x+35y=15
સરળ બનાવો.
10x-10x-12y-35y=20-15
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 10x-12y=20માંથી 10x+35y=15 ને ઘટાડો.
-12y-35y=20-15
-10x માં 10x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 10x અને -10x ને વિભાજિત કરો.
-47y=20-15
-35y માં -12y ઍડ કરો.
-47y=5
-15 માં 20 ઍડ કરો.
y=-\frac{5}{47}
બન્ને બાજુનો -47 થી ભાગાકાર કરો.
2x+7\left(-\frac{5}{47}\right)=3
2x+7y=3માં y માટે -\frac{5}{47} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-\frac{35}{47}=3
-\frac{5}{47} ને 7 વાર ગુણાકાર કરો.
2x=\frac{176}{47}
સમીકરણની બન્ને બાજુ \frac{35}{47} ઍડ કરો.
x=\frac{88}{47}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{88}{47},y=-\frac{5}{47}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.