મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

5x-4y=19,x+2y=7
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x-4y=19
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=4y+19
સમીકરણની બન્ને બાજુ 4y ઍડ કરો.
x=\frac{1}{5}\left(4y+19\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{4}{5}y+\frac{19}{5}
4y+19 ને \frac{1}{5} વાર ગુણાકાર કરો.
\frac{4}{5}y+\frac{19}{5}+2y=7
અન્ય સમીકરણ, x+2y=7 માં x માટે \frac{4y+19}{5} નો પ્રતિસ્થાપન કરો.
\frac{14}{5}y+\frac{19}{5}=7
2y માં \frac{4y}{5} ઍડ કરો.
\frac{14}{5}y=\frac{16}{5}
સમીકરણની બન્ને બાજુથી \frac{19}{5} નો ઘટાડો કરો.
y=\frac{8}{7}
સમીકરણની બન્ને બાજુનો \frac{14}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{4}{5}\times \frac{8}{7}+\frac{19}{5}
x=\frac{4}{5}y+\frac{19}{5}માં y માટે \frac{8}{7} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{32}{35}+\frac{19}{5}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{4}{5} નો \frac{8}{7} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{33}{7}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{32}{35} માં \frac{19}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{33}{7},y=\frac{8}{7}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x-4y=19,x+2y=7
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
\left(\begin{matrix}5&-4\\1&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\right)}&-\frac{-4}{5\times 2-\left(-4\right)}\\-\frac{1}{5\times 2-\left(-4\right)}&\frac{5}{5\times 2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{1}{14}&\frac{5}{14}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 19+\frac{2}{7}\times 7\\-\frac{1}{14}\times 19+\frac{5}{14}\times 7\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{7}\\\frac{8}{7}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{33}{7},y=\frac{8}{7}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x-4y=19,x+2y=7
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5x-4y=19,5x+5\times 2y=5\times 7
5x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
5x-4y=19,5x+10y=35
સરળ બનાવો.
5x-5x-4y-10y=19-35
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 5x-4y=19માંથી 5x+10y=35 ને ઘટાડો.
-4y-10y=19-35
-5x માં 5x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 5x અને -5x ને વિભાજિત કરો.
-14y=19-35
-10y માં -4y ઍડ કરો.
-14y=-16
-35 માં 19 ઍડ કરો.
y=\frac{8}{7}
બન્ને બાજુનો -14 થી ભાગાકાર કરો.
x+2\times \frac{8}{7}=7
x+2y=7માં y માટે \frac{8}{7} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x+\frac{16}{7}=7
\frac{8}{7} ને 2 વાર ગુણાકાર કરો.
x=\frac{33}{7}
સમીકરણની બન્ને બાજુથી \frac{16}{7} નો ઘટાડો કરો.
x=\frac{33}{7},y=\frac{8}{7}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.