x, y માટે ઉકેલો
x = \frac{17}{11} = 1\frac{6}{11} \approx 1.545454545
y = -\frac{26}{11} = -2\frac{4}{11} \approx -2.363636364
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
5x+2y=3,12x+7y=2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x+2y=3
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=-2y+3
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{5}\left(-2y+3\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-\frac{2}{5}y+\frac{3}{5}
-2y+3 ને \frac{1}{5} વાર ગુણાકાર કરો.
12\left(-\frac{2}{5}y+\frac{3}{5}\right)+7y=2
અન્ય સમીકરણ, 12x+7y=2 માં x માટે \frac{-2y+3}{5} નો પ્રતિસ્થાપન કરો.
-\frac{24}{5}y+\frac{36}{5}+7y=2
\frac{-2y+3}{5} ને 12 વાર ગુણાકાર કરો.
\frac{11}{5}y+\frac{36}{5}=2
7y માં -\frac{24y}{5} ઍડ કરો.
\frac{11}{5}y=-\frac{26}{5}
સમીકરણની બન્ને બાજુથી \frac{36}{5} નો ઘટાડો કરો.
y=-\frac{26}{11}
સમીકરણની બન્ને બાજુનો \frac{11}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{2}{5}\left(-\frac{26}{11}\right)+\frac{3}{5}
x=-\frac{2}{5}y+\frac{3}{5}માં y માટે -\frac{26}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{52}{55}+\frac{3}{5}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{2}{5} નો -\frac{26}{11} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{17}{11}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{52}{55} માં \frac{3}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{17}{11},y=-\frac{26}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x+2y=3,12x+7y=2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&2\\12&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&2\\12&7\end{matrix}\right))\left(\begin{matrix}5&2\\12&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\12&7\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
\left(\begin{matrix}5&2\\12&7\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\12&7\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\12&7\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-2\times 12}&-\frac{2}{5\times 7-2\times 12}\\-\frac{12}{5\times 7-2\times 12}&\frac{5}{5\times 7-2\times 12}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{11}&-\frac{2}{11}\\-\frac{12}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{11}\times 3-\frac{2}{11}\times 2\\-\frac{12}{11}\times 3+\frac{5}{11}\times 2\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{11}\\-\frac{26}{11}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{17}{11},y=-\frac{26}{11}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x+2y=3,12x+7y=2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
12\times 5x+12\times 2y=12\times 3,5\times 12x+5\times 7y=5\times 2
5x અને 12x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 12 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
60x+24y=36,60x+35y=10
સરળ બનાવો.
60x-60x+24y-35y=36-10
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 60x+24y=36માંથી 60x+35y=10 ને ઘટાડો.
24y-35y=36-10
-60x માં 60x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 60x અને -60x ને વિભાજિત કરો.
-11y=36-10
-35y માં 24y ઍડ કરો.
-11y=26
-10 માં 36 ઍડ કરો.
y=-\frac{26}{11}
બન્ને બાજુનો -11 થી ભાગાકાર કરો.
12x+7\left(-\frac{26}{11}\right)=2
12x+7y=2માં y માટે -\frac{26}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
12x-\frac{182}{11}=2
-\frac{26}{11} ને 7 વાર ગુણાકાર કરો.
12x=\frac{204}{11}
સમીકરણની બન્ને બાજુ \frac{182}{11} ઍડ કરો.
x=\frac{17}{11}
બન્ને બાજુનો 12 થી ભાગાકાર કરો.
x=\frac{17}{11},y=-\frac{26}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}