મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

5x+2y=17,2x+3y=3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x+2y=17
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=-2y+17
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{5}\left(-2y+17\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-\frac{2}{5}y+\frac{17}{5}
-2y+17 ને \frac{1}{5} વાર ગુણાકાર કરો.
2\left(-\frac{2}{5}y+\frac{17}{5}\right)+3y=3
અન્ય સમીકરણ, 2x+3y=3 માં x માટે \frac{-2y+17}{5} નો પ્રતિસ્થાપન કરો.
-\frac{4}{5}y+\frac{34}{5}+3y=3
\frac{-2y+17}{5} ને 2 વાર ગુણાકાર કરો.
\frac{11}{5}y+\frac{34}{5}=3
3y માં -\frac{4y}{5} ઍડ કરો.
\frac{11}{5}y=-\frac{19}{5}
સમીકરણની બન્ને બાજુથી \frac{34}{5} નો ઘટાડો કરો.
y=-\frac{19}{11}
સમીકરણની બન્ને બાજુનો \frac{11}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{2}{5}\left(-\frac{19}{11}\right)+\frac{17}{5}
x=-\frac{2}{5}y+\frac{17}{5}માં y માટે -\frac{19}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{38}{55}+\frac{17}{5}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{2}{5} નો -\frac{19}{11} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{45}{11}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{38}{55} માં \frac{17}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{45}{11},y=-\frac{19}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x+2y=17,2x+3y=3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
\left(\begin{matrix}5&2\\2&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-2\times 2}&-\frac{2}{5\times 3-2\times 2}\\-\frac{2}{5\times 3-2\times 2}&\frac{5}{5\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{2}{11}\\-\frac{2}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 17-\frac{2}{11}\times 3\\-\frac{2}{11}\times 17+\frac{5}{11}\times 3\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{45}{11}\\-\frac{19}{11}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{45}{11},y=-\frac{19}{11}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x+2y=17,2x+3y=3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 5x+2\times 2y=2\times 17,5\times 2x+5\times 3y=5\times 3
5x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
10x+4y=34,10x+15y=15
સરળ બનાવો.
10x-10x+4y-15y=34-15
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 10x+4y=34માંથી 10x+15y=15 ને ઘટાડો.
4y-15y=34-15
-10x માં 10x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 10x અને -10x ને વિભાજિત કરો.
-11y=34-15
-15y માં 4y ઍડ કરો.
-11y=19
-15 માં 34 ઍડ કરો.
y=-\frac{19}{11}
બન્ને બાજુનો -11 થી ભાગાકાર કરો.
2x+3\left(-\frac{19}{11}\right)=3
2x+3y=3માં y માટે -\frac{19}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-\frac{57}{11}=3
-\frac{19}{11} ને 3 વાર ગુણાકાર કરો.
2x=\frac{90}{11}
સમીકરણની બન્ને બાજુ \frac{57}{11} ઍડ કરો.
x=\frac{45}{11}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{45}{11},y=-\frac{19}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.