b, c માટે ઉકેલો
b=0
c=0
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
5b+2c=0,b+2c=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5b+2c=0
એક સમીકરણની પસંદગી કરો અને તેને b ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને b માટે ઉકેલો.
5b=-2c
સમીકરણની બન્ને બાજુથી 2c નો ઘટાડો કરો.
b=\frac{1}{5}\left(-2\right)c
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
b=-\frac{2}{5}c
-2c ને \frac{1}{5} વાર ગુણાકાર કરો.
-\frac{2}{5}c+2c=0
અન્ય સમીકરણ, b+2c=0 માં b માટે -\frac{2c}{5} નો પ્રતિસ્થાપન કરો.
\frac{8}{5}c=0
2c માં -\frac{2c}{5} ઍડ કરો.
c=0
સમીકરણની બન્ને બાજુનો \frac{8}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
b=0
b=-\frac{2}{5}cમાં c માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું b માટે ઉકેલો.
b=0,c=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5b+2c=0,b+2c=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}5&2\\1&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-2}&-\frac{2}{5\times 2-2}\\-\frac{1}{5\times 2-2}&\frac{5}{5\times 2-2}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\-\frac{1}{8}&\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
b=0,c=0
મેટ્રિક્સ ઘટકો b અને c ને કાઢો.
5b+2c=0,b+2c=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5b-b+2c-2c=0
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 5b+2c=0માંથી b+2c=0 ને ઘટાડો.
5b-b=0
-2c માં 2c ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2c અને -2c ને વિભાજિત કરો.
4b=0
-b માં 5b ઍડ કરો.
b=0
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
2c=0
b+2c=0માં b માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું c માટે ઉકેલો.
b=0,c=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}