મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

5x+10=4y
પ્રથમ સમીકરણનો વિચાર કરો. 5 સાથે x+2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
5x+10-4y=0
બન્ને બાજુથી 4y ઘટાડો.
5x-4y=-10
બન્ને બાજુથી 10 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
3y-12=6x
બીજા સમીકરણનો વિચાર કરો. 3 સાથે y-4 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3y-12-6x=0
બન્ને બાજુથી 6x ઘટાડો.
3y-6x=12
બંને સાઇડ્સ માટે 12 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
5x-4y=-10,-6x+3y=12
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x-4y=-10
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=4y-10
સમીકરણની બન્ને બાજુ 4y ઍડ કરો.
x=\frac{1}{5}\left(4y-10\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{4}{5}y-2
4y-10 ને \frac{1}{5} વાર ગુણાકાર કરો.
-6\left(\frac{4}{5}y-2\right)+3y=12
અન્ય સમીકરણ, -6x+3y=12 માં x માટે \frac{4y}{5}-2 નો પ્રતિસ્થાપન કરો.
-\frac{24}{5}y+12+3y=12
\frac{4y}{5}-2 ને -6 વાર ગુણાકાર કરો.
-\frac{9}{5}y+12=12
3y માં -\frac{24y}{5} ઍડ કરો.
-\frac{9}{5}y=0
સમીકરણની બન્ને બાજુથી 12 નો ઘટાડો કરો.
y=0
સમીકરણની બન્ને બાજુનો -\frac{9}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-2
x=\frac{4}{5}y-2માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-2,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x+10=4y
પ્રથમ સમીકરણનો વિચાર કરો. 5 સાથે x+2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
5x+10-4y=0
બન્ને બાજુથી 4y ઘટાડો.
5x-4y=-10
બન્ને બાજુથી 10 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
3y-12=6x
બીજા સમીકરણનો વિચાર કરો. 3 સાથે y-4 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3y-12-6x=0
બન્ને બાજુથી 6x ઘટાડો.
3y-6x=12
બંને સાઇડ્સ માટે 12 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
5x-4y=-10,-6x+3y=12
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\12\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-4\left(-6\right)\right)}&-\frac{-4}{5\times 3-\left(-4\left(-6\right)\right)}\\-\frac{-6}{5\times 3-\left(-4\left(-6\right)\right)}&\frac{5}{5\times 3-\left(-4\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{4}{9}\\-\frac{2}{3}&-\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-10\right)-\frac{4}{9}\times 12\\-\frac{2}{3}\left(-10\right)-\frac{5}{9}\times 12\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\0\end{matrix}\right)
અંકગણિતીય કરો.
x=-2,y=0
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x+10=4y
પ્રથમ સમીકરણનો વિચાર કરો. 5 સાથે x+2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
5x+10-4y=0
બન્ને બાજુથી 4y ઘટાડો.
5x-4y=-10
બન્ને બાજુથી 10 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
3y-12=6x
બીજા સમીકરણનો વિચાર કરો. 3 સાથે y-4 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3y-12-6x=0
બન્ને બાજુથી 6x ઘટાડો.
3y-6x=12
બંને સાઇડ્સ માટે 12 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
5x-4y=-10,-6x+3y=12
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-6\times 5x-6\left(-4\right)y=-6\left(-10\right),5\left(-6\right)x+5\times 3y=5\times 12
5x અને -6x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
-30x+24y=60,-30x+15y=60
સરળ બનાવો.
-30x+30x+24y-15y=60-60
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -30x+24y=60માંથી -30x+15y=60 ને ઘટાડો.
24y-15y=60-60
30x માં -30x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -30x અને 30x ને વિભાજિત કરો.
9y=60-60
-15y માં 24y ઍડ કરો.
9y=0
-60 માં 60 ઍડ કરો.
y=0
બન્ને બાજુનો 9 થી ભાગાકાર કરો.
-6x=12
-6x+3y=12માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-2
બન્ને બાજુનો -6 થી ભાગાકાર કરો.
x=-2,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.