મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4x-5y=18,3x-2y=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x-5y=18
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=5y+18
સમીકરણની બન્ને બાજુ 5y ઍડ કરો.
x=\frac{1}{4}\left(5y+18\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{5}{4}y+\frac{9}{2}
5y+18 ને \frac{1}{4} વાર ગુણાકાર કરો.
3\left(\frac{5}{4}y+\frac{9}{2}\right)-2y=10
અન્ય સમીકરણ, 3x-2y=10 માં x માટે \frac{5y}{4}+\frac{9}{2} નો પ્રતિસ્થાપન કરો.
\frac{15}{4}y+\frac{27}{2}-2y=10
\frac{5y}{4}+\frac{9}{2} ને 3 વાર ગુણાકાર કરો.
\frac{7}{4}y+\frac{27}{2}=10
-2y માં \frac{15y}{4} ઍડ કરો.
\frac{7}{4}y=-\frac{7}{2}
સમીકરણની બન્ને બાજુથી \frac{27}{2} નો ઘટાડો કરો.
y=-2
સમીકરણની બન્ને બાજુનો \frac{7}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{5}{4}\left(-2\right)+\frac{9}{2}
x=\frac{5}{4}y+\frac{9}{2}માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-5+9}{2}
-2 ને \frac{5}{4} વાર ગુણાકાર કરો.
x=2
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{5}{2} માં \frac{9}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=2,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x-5y=18,3x-2y=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}18\\10\end{matrix}\right)
\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}18\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}18\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{4\left(-2\right)-\left(-5\times 3\right)}&-\frac{-5}{4\left(-2\right)-\left(-5\times 3\right)}\\-\frac{3}{4\left(-2\right)-\left(-5\times 3\right)}&\frac{4}{4\left(-2\right)-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}18\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{5}{7}\\-\frac{3}{7}&\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}18\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\times 18+\frac{5}{7}\times 10\\-\frac{3}{7}\times 18+\frac{4}{7}\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=-2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x-5y=18,3x-2y=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 4x+3\left(-5\right)y=3\times 18,4\times 3x+4\left(-2\right)y=4\times 10
4x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
12x-15y=54,12x-8y=40
સરળ બનાવો.
12x-12x-15y+8y=54-40
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x-15y=54માંથી 12x-8y=40 ને ઘટાડો.
-15y+8y=54-40
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
-7y=54-40
8y માં -15y ઍડ કરો.
-7y=14
-40 માં 54 ઍડ કરો.
y=-2
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
3x-2\left(-2\right)=10
3x-2y=10માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x+4=10
-2 ને -2 વાર ગુણાકાર કરો.
3x=6
સમીકરણની બન્ને બાજુથી 4 નો ઘટાડો કરો.
x=2
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=2,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.