મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4x-3y-10=0,3x+4y+5=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x-3y-10=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x-3y=10
સમીકરણની બન્ને બાજુ 10 ઍડ કરો.
4x=3y+10
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=\frac{1}{4}\left(3y+10\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{3}{4}y+\frac{5}{2}
3y+10 ને \frac{1}{4} વાર ગુણાકાર કરો.
3\left(\frac{3}{4}y+\frac{5}{2}\right)+4y+5=0
અન્ય સમીકરણ, 3x+4y+5=0 માં x માટે \frac{3y}{4}+\frac{5}{2} નો પ્રતિસ્થાપન કરો.
\frac{9}{4}y+\frac{15}{2}+4y+5=0
\frac{3y}{4}+\frac{5}{2} ને 3 વાર ગુણાકાર કરો.
\frac{25}{4}y+\frac{15}{2}+5=0
4y માં \frac{9y}{4} ઍડ કરો.
\frac{25}{4}y+\frac{25}{2}=0
5 માં \frac{15}{2} ઍડ કરો.
\frac{25}{4}y=-\frac{25}{2}
સમીકરણની બન્ને બાજુથી \frac{25}{2} નો ઘટાડો કરો.
y=-2
સમીકરણની બન્ને બાજુનો \frac{25}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{3}{4}\left(-2\right)+\frac{5}{2}
x=\frac{3}{4}y+\frac{5}{2}માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-3+5}{2}
-2 ને \frac{3}{4} વાર ગુણાકાર કરો.
x=1
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{3}{2} માં \frac{5}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=1,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x-3y-10=0,3x+4y+5=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-5\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}4&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
\left(\begin{matrix}4&-3\\3&4\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&4\end{matrix}\right))\left(\begin{matrix}10\\-5\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-\left(-3\times 3\right)}&-\frac{-3}{4\times 4-\left(-3\times 3\right)}\\-\frac{3}{4\times 4-\left(-3\times 3\right)}&\frac{4}{4\times 4-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-5\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\-\frac{3}{25}&\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}10\\-5\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 10+\frac{3}{25}\left(-5\right)\\-\frac{3}{25}\times 10+\frac{4}{25}\left(-5\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=-2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x-3y-10=0,3x+4y+5=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 4x+3\left(-3\right)y+3\left(-10\right)=0,4\times 3x+4\times 4y+4\times 5=0
4x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
12x-9y-30=0,12x+16y+20=0
સરળ બનાવો.
12x-12x-9y-16y-30-20=0
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x-9y-30=0માંથી 12x+16y+20=0 ને ઘટાડો.
-9y-16y-30-20=0
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
-25y-30-20=0
-16y માં -9y ઍડ કરો.
-25y-50=0
-20 માં -30 ઍડ કરો.
-25y=50
સમીકરણની બન્ને બાજુ 50 ઍડ કરો.
y=-2
બન્ને બાજુનો -25 થી ભાગાકાર કરો.
3x+4\left(-2\right)+5=0
3x+4y+5=0માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x-8+5=0
-2 ને 4 વાર ગુણાકાર કરો.
3x-3=0
5 માં -8 ઍડ કરો.
3x=3
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
x=1
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=1,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.