x, y માટે ઉકેલો
x = \frac{22}{19} = 1\frac{3}{19} \approx 1.157894737
y = \frac{23}{19} = 1\frac{4}{19} \approx 1.210526316
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x-3y=1,5x+y=7
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x-3y=1
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=3y+1
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=\frac{1}{4}\left(3y+1\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{3}{4}y+\frac{1}{4}
3y+1 ને \frac{1}{4} વાર ગુણાકાર કરો.
5\left(\frac{3}{4}y+\frac{1}{4}\right)+y=7
અન્ય સમીકરણ, 5x+y=7 માં x માટે \frac{3y+1}{4} નો પ્રતિસ્થાપન કરો.
\frac{15}{4}y+\frac{5}{4}+y=7
\frac{3y+1}{4} ને 5 વાર ગુણાકાર કરો.
\frac{19}{4}y+\frac{5}{4}=7
y માં \frac{15y}{4} ઍડ કરો.
\frac{19}{4}y=\frac{23}{4}
સમીકરણની બન્ને બાજુથી \frac{5}{4} નો ઘટાડો કરો.
y=\frac{23}{19}
સમીકરણની બન્ને બાજુનો \frac{19}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{3}{4}\times \frac{23}{19}+\frac{1}{4}
x=\frac{3}{4}y+\frac{1}{4}માં y માટે \frac{23}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{69}{76}+\frac{1}{4}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{3}{4} નો \frac{23}{19} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{22}{19}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{69}{76} માં \frac{1}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{22}{19},y=\frac{23}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x-3y=1,5x+y=7
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}4&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
\left(\begin{matrix}4&-3\\5&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\times 5\right)}&-\frac{-3}{4-\left(-3\times 5\right)}\\-\frac{5}{4-\left(-3\times 5\right)}&\frac{4}{4-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&\frac{3}{19}\\-\frac{5}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}+\frac{3}{19}\times 7\\-\frac{5}{19}+\frac{4}{19}\times 7\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{19}\\\frac{23}{19}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{22}{19},y=\frac{23}{19}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x-3y=1,5x+y=7
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5\times 4x+5\left(-3\right)y=5,4\times 5x+4y=4\times 7
4x અને 5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
20x-15y=5,20x+4y=28
સરળ બનાવો.
20x-20x-15y-4y=5-28
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 20x-15y=5માંથી 20x+4y=28 ને ઘટાડો.
-15y-4y=5-28
-20x માં 20x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 20x અને -20x ને વિભાજિત કરો.
-19y=5-28
-4y માં -15y ઍડ કરો.
-19y=-23
-28 માં 5 ઍડ કરો.
y=\frac{23}{19}
બન્ને બાજુનો -19 થી ભાગાકાર કરો.
5x+\frac{23}{19}=7
5x+y=7માં y માટે \frac{23}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
5x=\frac{110}{19}
સમીકરણની બન્ને બાજુથી \frac{23}{19} નો ઘટાડો કરો.
x=\frac{22}{19}
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{22}{19},y=\frac{23}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}