મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4x-3y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3y ઘટાડો.
y+3-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-x=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
4x-3y=0,-x+y=-3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x-3y=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=3y
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=\frac{1}{4}\times 3y
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{3}{4}y
3y ને \frac{1}{4} વાર ગુણાકાર કરો.
-\frac{3}{4}y+y=-3
અન્ય સમીકરણ, -x+y=-3 માં x માટે \frac{3y}{4} નો પ્રતિસ્થાપન કરો.
\frac{1}{4}y=-3
y માં -\frac{3y}{4} ઍડ કરો.
y=-12
બન્ને બાજુનો 4 દ્વારા ગુણાકાર કરો.
x=\frac{3}{4}\left(-12\right)
x=\frac{3}{4}yમાં y માટે -12 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-9
-12 ને \frac{3}{4} વાર ગુણાકાર કરો.
x=-9,y=-12
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x-3y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3y ઘટાડો.
y+3-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-x=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
4x-3y=0,-x+y=-3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\left(-1\right)\right)}&-\frac{-3}{4-\left(-3\left(-1\right)\right)}\\-\frac{-1}{4-\left(-3\left(-1\right)\right)}&\frac{4}{4-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&3\\1&4\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\left(-3\right)\\4\left(-3\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
અંકગણિતીય કરો.
x=-9,y=-12
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x-3y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 3y ઘટાડો.
y+3-x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-x=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
4x-3y=0,-x+y=-3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-4x-\left(-3y\right)=0,4\left(-1\right)x+4y=4\left(-3\right)
4x અને -x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
-4x+3y=0,-4x+4y=-12
સરળ બનાવો.
-4x+4x+3y-4y=12
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -4x+3y=0માંથી -4x+4y=-12 ને ઘટાડો.
3y-4y=12
4x માં -4x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -4x અને 4x ને વિભાજિત કરો.
-y=12
-4y માં 3y ઍડ કરો.
y=-12
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
-x-12=-3
-x+y=-3માં y માટે -12 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-x=9
સમીકરણની બન્ને બાજુ 12 ઍડ કરો.
x=-9
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=-9,y=-12
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.