x, y માટે ઉકેલો
x=2
y=0
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x+y=8,x-y=2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+y=8
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-y+8
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-y+8\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{1}{4}y+2
-y+8 ને \frac{1}{4} વાર ગુણાકાર કરો.
-\frac{1}{4}y+2-y=2
અન્ય સમીકરણ, x-y=2 માં x માટે -\frac{y}{4}+2 નો પ્રતિસ્થાપન કરો.
-\frac{5}{4}y+2=2
-y માં -\frac{y}{4} ઍડ કરો.
-\frac{5}{4}y=0
સમીકરણની બન્ને બાજુથી 2 નો ઘટાડો કરો.
y=0
સમીકરણની બન્ને બાજુનો -\frac{5}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=2
x=-\frac{1}{4}y+2માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=2,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+y=8,x-y=2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
\left(\begin{matrix}4&1\\1&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-1}&-\frac{1}{4\left(-1\right)-1}\\-\frac{1}{4\left(-1\right)-1}&\frac{4}{4\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{1}{5}&-\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 8+\frac{1}{5}\times 2\\\frac{1}{5}\times 8-\frac{4}{5}\times 2\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=0
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+y=8,x-y=2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4x+y=8,4x+4\left(-1\right)y=4\times 2
4x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
4x+y=8,4x-4y=8
સરળ બનાવો.
4x-4x+y+4y=8-8
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 4x+y=8માંથી 4x-4y=8 ને ઘટાડો.
y+4y=8-8
-4x માં 4x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 4x અને -4x ને વિભાજિત કરો.
5y=8-8
4y માં y ઍડ કરો.
5y=0
-8 માં 8 ઍડ કરો.
y=0
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=2
x-y=2માં y માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=2,y=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}