મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4x+5y=3,2x-3y=4
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+5y=3
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-5y+3
સમીકરણની બન્ને બાજુથી 5y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-5y+3\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{5}{4}y+\frac{3}{4}
-5y+3 ને \frac{1}{4} વાર ગુણાકાર કરો.
2\left(-\frac{5}{4}y+\frac{3}{4}\right)-3y=4
અન્ય સમીકરણ, 2x-3y=4 માં x માટે \frac{-5y+3}{4} નો પ્રતિસ્થાપન કરો.
-\frac{5}{2}y+\frac{3}{2}-3y=4
\frac{-5y+3}{4} ને 2 વાર ગુણાકાર કરો.
-\frac{11}{2}y+\frac{3}{2}=4
-3y માં -\frac{5y}{2} ઍડ કરો.
-\frac{11}{2}y=\frac{5}{2}
સમીકરણની બન્ને બાજુથી \frac{3}{2} નો ઘટાડો કરો.
y=-\frac{5}{11}
સમીકરણની બન્ને બાજુનો -\frac{11}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{5}{4}\left(-\frac{5}{11}\right)+\frac{3}{4}
x=-\frac{5}{4}y+\frac{3}{4}માં y માટે -\frac{5}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{25}{44}+\frac{3}{4}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{5}{4} નો -\frac{5}{11} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{29}{22}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{25}{44} માં \frac{3}{4} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{29}{22},y=-\frac{5}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+5y=3,2x-3y=4
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&5\\2&-3\end{matrix}\right))\left(\begin{matrix}4&5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-3\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
\left(\begin{matrix}4&5\\2&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-3\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-3\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-5\times 2}&-\frac{5}{4\left(-3\right)-5\times 2}\\-\frac{2}{4\left(-3\right)-5\times 2}&\frac{4}{4\left(-3\right)-5\times 2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{5}{22}\\\frac{1}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 3+\frac{5}{22}\times 4\\\frac{1}{11}\times 3-\frac{2}{11}\times 4\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{29}{22}\\-\frac{5}{11}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{29}{22},y=-\frac{5}{11}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+5y=3,2x-3y=4
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 4x+2\times 5y=2\times 3,4\times 2x+4\left(-3\right)y=4\times 4
4x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
8x+10y=6,8x-12y=16
સરળ બનાવો.
8x-8x+10y+12y=6-16
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x+10y=6માંથી 8x-12y=16 ને ઘટાડો.
10y+12y=6-16
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
22y=6-16
12y માં 10y ઍડ કરો.
22y=-10
-16 માં 6 ઍડ કરો.
y=-\frac{5}{11}
બન્ને બાજુનો 22 થી ભાગાકાર કરો.
2x-3\left(-\frac{5}{11}\right)=4
2x-3y=4માં y માટે -\frac{5}{11} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+\frac{15}{11}=4
-\frac{5}{11} ને -3 વાર ગુણાકાર કરો.
2x=\frac{29}{11}
સમીકરણની બન્ને બાજુથી \frac{15}{11} નો ઘટાડો કરો.
x=\frac{29}{22}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{29}{22},y=-\frac{5}{11}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.